We study behavior of an atomic wave packet in a circularly polarized electromagnetic wave, and particularly calculate the atomic inversion of the wave packet. A general method of calculation is presented. The results ...We study behavior of an atomic wave packet in a circularly polarized electromagnetic wave, and particularly calculate the atomic inversion of the wave packet. A general method of calculation is presented. The results are interesting. For example, if the wave packet is very narrow or/and the interaction is very strong, no matter the atom is initially in its ground state or excited state, the atomic inversion approaches zero as time approaches infinity. If the atom is initially in its ground state and excited state with the probability 1/2 respectively, and if the momentum density is an even function, then the atomic inversion equals zero at any time.展开更多
We demonstrate theoretically that the epsilon-near-zero materials can be utilized to control effectively the polarization conversion of an electromagnetic wave through reflection. The significant feature differing fro...We demonstrate theoretically that the epsilon-near-zero materials can be utilized to control effectively the polarization conversion of an electromagnetic wave through reflection. The significant feature differing from all other means based on whatever natural materials or metamaterials is that for TM incident wave, the reflected phase is a constant, while for TE wave, the reflected phase is a linear function of the incident angle. The phase difference between them covers the range from -180°to 0°, and the polarization conversions from linear states to elliptical or circular states can be obtained by only adjusting the incident angle. Because no complex structures are employed, our proposal promises a simple approach for manipulating polarization conversion at both terahertz and optical frequencies.展开更多
A new method of single sample polarization filtering is proposed. The algorithm is fast and suitable for the polarization processing of stationary or nonstationary polarized disturbed signals with one or more independ...A new method of single sample polarization filtering is proposed. The algorithm is fast and suitable for the polarization processing of stationary or nonstationary polarized disturbed signals with one or more independent disturbances. A ground wave polarimetric radar with the ability of radio disturbance suppression is then introduced. Some numerical results demonstrate the effectiveness of single sample polarization filtering method for ground wave polarimetric radar.展开更多
The microscopic morphology of electromagnetic wave absorbers influences the multiple reflections of electromagnetic waves and impedance matching,determining the absorption properties.Herein,the urchin-shaped bimetalli...The microscopic morphology of electromagnetic wave absorbers influences the multiple reflections of electromagnetic waves and impedance matching,determining the absorption properties.Herein,the urchin-shaped bimetallic nickel-cobalt oxide/carbon(NiCo_(2)O_(4)/C)composites are prepared via a hy-drothermal route,whose absorption properties are investigated by different morphologies regulated by changing calcination temperature.A minimum reflection loss(RL_(min))of-75.26 dB is achieved at a match-ing thickness of 1.5 mm,and the effective absorption bandwidth(EAB)of 8.96 GHz is achieved at 2 mm.Multi-advantages of the synthesized NiCo_(2)O_(4)/C composites contribute to satisfactory absorption proper-ties.First,the interweaving of the needle-like structures increases the opportunities for scattering and multiple reflections of incident electromagnetic waves,and builds up a conductive network to facilitate the enhancement of conductive losses.Second,the carbon component in the NiCo_(2)O_(4)/C composites en-hances the interfacial polarization and reduces the density of the absorber.Besides,generous oxygen va-cancy defects are introduced into the NiCo_(2)O_(4)/C composites,which induces defect polarization and dipole polarization.In summary,the ternary coordination of components,defects and morphology led to out-standing electromagnetic wave absorption,which lightened the path for improving the electromagnetic wave absorption property and enriching the family of NiCo_(2)O_(4) absorbers with excellent performance.展开更多
The frequency selective surface (FSS) has been widely applied by means of its spatial frequency-filter characteristic, but it is always designed and used as a device with fixed frequency response. In order to tune the...The frequency selective surface (FSS) has been widely applied by means of its spatial frequency-filter characteristic, but it is always designed and used as a device with fixed frequency response. In order to tune the resonant frequency and switch the frequency channel, a scheme of mechanically tunable FSS is theoretically analyzed by using the method of Floquet's vector modes expansion and fields matching. A double-layer tunable FSS with dipole element can perform a dynamic range of resonant frequency covering whole X-band.展开更多
The propagation of polychromatic electromagnetic Gaussian Schell-model (EGSM) beams in free space is investigated. It is shown that the spectral degree of polarization, spectral degree of coherence, and normalized s...The propagation of polychromatic electromagnetic Gaussian Schell-model (EGSM) beams in free space is investigated. It is shown that the spectral degree of polarization, spectral degree of coherence, and normalized spectrum change generally on propagation. The conditions of keeping the spectral invariance and keeping polarization invariance for the polychromatic EGSM beams are derived respectively. The results indicate that the constraints on the parameters of EGSM source to keep polarization invariance on propagation are more rigorous than those to keep invariance of the normalized spectrum.展开更多
We propose and analyze a long-range dielectric-loaded surface plasmon polariton (SPP) waveguide based on graded-index ridge over server millimeter distances. Then the influence of the dielectric thickness and the ri...We propose and analyze a long-range dielectric-loaded surface plasmon polariton (SPP) waveguide based on graded-index ridge over server millimeter distances. Then the influence of the dielectric thickness and the ridge refractive index on propagation length and mode width is discussed and simulated with the finite ele- ment raethod. The result shows that the SPP can propagate as long as 3.42 mm, as well as the mode width keeping as 1.64μm, a better one compared with the fixed refractive index. Considering its nanoscale dimension and outstanding performance, the structure is easily realized when connected with electrodes.展开更多
In order to realize wideband filtering properties of frequency selective surface (FSS), FSS of closely packed elements is presented. The Y loop elements are chosen as the graphics elements. Based on the spectral dom...In order to realize wideband filtering properties of frequency selective surface (FSS), FSS of closely packed elements is presented. The Y loop elements are chosen as the graphics elements. Based on the spectral domain method, the frequency response is analyzed for different incident angles and polarizations. The result of the numerical analysis shows that the dense FSS has wide passband with better independence of angle and polarization.展开更多
This Letter reports the formation of periodic surface structures on Ni–Fe film irradiated by a single femtosecond laser pulse. A concave lens with a focus length of-150 mm is placed in front of an objective(100×...This Letter reports the formation of periodic surface structures on Ni–Fe film irradiated by a single femtosecond laser pulse. A concave lens with a focus length of-150 mm is placed in front of an objective(100×, NA=0.9),which transforms the Gaussian laser field into a ring distribution by the Fresnel diffraction. Periodic ripples form on the ablation area after the irradiation of a single femtosecond laser pulse, which depends on the laser polarization and laser fluence. We propose that the ring structure of the laser field leads to a similar transient distribution of the permittivity on the sample surface, which further launches the surface plasmon polaritons. The interaction of the incident laser with surface plasmon polaritons dominates the formation of periodic surface structures.展开更多
We propose a scheme to obtain a low-loss propagation of Airy surface plasmon polaritons (SPPs) along the interface between a dielectric and a negative-index metamaterial (NIMM). We show that by using the trans- ve...We propose a scheme to obtain a low-loss propagation of Airy surface plasmon polaritons (SPPs) along the interface between a dielectric and a negative-index metamaterial (NIMM). We show that by using the trans- verse-magnetic mode and the related destructive interference effect between electric and magnetic absorption responses, the propagation loss of the Airy SPPs can be largely suppressed when the optical frequency is close to the lossless point of the NIMM. As a result, the Airy SPPs obtained in our scheme can propagate more than a 6 times longer distance than that in conventional dielectric-metal interfaces.展开更多
We present an experimental study on a unidirectional surface plasmon polariton (SPP) launcher based on a compact binary area-coded nanohole array, where the symmetry breaking is realized via effective-index modulati...We present an experimental study on a unidirectional surface plasmon polariton (SPP) launcher based on a compact binary area-coded nanohole array, where the symmetry breaking is realized via effective-index modulation in the binary pattern of the gold film, thus avoiding the challenge of modulating nanostructure in its depth. It is shown that SPPs can be unidirectionally and effectively excited at normal incidence. The SPP intensity and asymmetric excitation ratio, which are two key figure-of-merits of SPP launchers, can be improved by increasing the number of array rows. The proposed device is compatible with most mature top-town nanofabrieation techniques and thus is perspective for low-cost mass production.展开更多
文摘We study behavior of an atomic wave packet in a circularly polarized electromagnetic wave, and particularly calculate the atomic inversion of the wave packet. A general method of calculation is presented. The results are interesting. For example, if the wave packet is very narrow or/and the interaction is very strong, no matter the atom is initially in its ground state or excited state, the atomic inversion approaches zero as time approaches infinity. If the atom is initially in its ground state and excited state with the probability 1/2 respectively, and if the momentum density is an even function, then the atomic inversion equals zero at any time.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51406126 and 11604229
文摘We demonstrate theoretically that the epsilon-near-zero materials can be utilized to control effectively the polarization conversion of an electromagnetic wave through reflection. The significant feature differing from all other means based on whatever natural materials or metamaterials is that for TM incident wave, the reflected phase is a constant, while for TE wave, the reflected phase is a linear function of the incident angle. The phase difference between them covers the range from -180°to 0°, and the polarization conversions from linear states to elliptical or circular states can be obtained by only adjusting the incident angle. Because no complex structures are employed, our proposal promises a simple approach for manipulating polarization conversion at both terahertz and optical frequencies.
文摘A new method of single sample polarization filtering is proposed. The algorithm is fast and suitable for the polarization processing of stationary or nonstationary polarized disturbed signals with one or more independent disturbances. A ground wave polarimetric radar with the ability of radio disturbance suppression is then introduced. Some numerical results demonstrate the effectiveness of single sample polarization filtering method for ground wave polarimetric radar.
基金financially supported by the National Natu-ral Science Foundation of China(No.52207249)the Natural Sci-ence Foundation of Shandong Province(No.ZR2022ME089)+2 种基金the research program of Top Talent Project of Yantai University(No.1115/2220001)the Yantai Basic Research Project(No.2022JCYJ04)the Science Fund of Shandong Laboratory of Advanced Ma-terials and Green Manufacturing(No.AMGM2021F11).The au-thors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4320141DSR72.
文摘The microscopic morphology of electromagnetic wave absorbers influences the multiple reflections of electromagnetic waves and impedance matching,determining the absorption properties.Herein,the urchin-shaped bimetallic nickel-cobalt oxide/carbon(NiCo_(2)O_(4)/C)composites are prepared via a hy-drothermal route,whose absorption properties are investigated by different morphologies regulated by changing calcination temperature.A minimum reflection loss(RL_(min))of-75.26 dB is achieved at a match-ing thickness of 1.5 mm,and the effective absorption bandwidth(EAB)of 8.96 GHz is achieved at 2 mm.Multi-advantages of the synthesized NiCo_(2)O_(4)/C composites contribute to satisfactory absorption proper-ties.First,the interweaving of the needle-like structures increases the opportunities for scattering and multiple reflections of incident electromagnetic waves,and builds up a conductive network to facilitate the enhancement of conductive losses.Second,the carbon component in the NiCo_(2)O_(4)/C composites en-hances the interfacial polarization and reduces the density of the absorber.Besides,generous oxygen va-cancy defects are introduced into the NiCo_(2)O_(4)/C composites,which induces defect polarization and dipole polarization.In summary,the ternary coordination of components,defects and morphology led to out-standing electromagnetic wave absorption,which lightened the path for improving the electromagnetic wave absorption property and enriching the family of NiCo_(2)O_(4) absorbers with excellent performance.
文摘The frequency selective surface (FSS) has been widely applied by means of its spatial frequency-filter characteristic, but it is always designed and used as a device with fixed frequency response. In order to tune the resonant frequency and switch the frequency channel, a scheme of mechanically tunable FSS is theoretically analyzed by using the method of Floquet's vector modes expansion and fields matching. A double-layer tunable FSS with dipole element can perform a dynamic range of resonant frequency covering whole X-band.
基金I am indebted to Prof. Emil Wolf at the University of Rochester (USA) for his helpful discussions and encouragement. This work was supported by the National Natural Science Foundation of China under Grant No.60477041.
文摘The propagation of polychromatic electromagnetic Gaussian Schell-model (EGSM) beams in free space is investigated. It is shown that the spectral degree of polarization, spectral degree of coherence, and normalized spectrum change generally on propagation. The conditions of keeping the spectral invariance and keeping polarization invariance for the polychromatic EGSM beams are derived respectively. The results indicate that the constraints on the parameters of EGSM source to keep polarization invariance on propagation are more rigorous than those to keep invariance of the normalized spectrum.
基金supported by the National Natural Science Foundation of China(Nos.61275201 and 61372037)the Beijing Excellent Ph.D.Thesis Guidance Foundation(No.20131001301)+1 种基金the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)the Opened Fund of the State Key Laboratory on Integrated Optoelectronics,Institute of Semiconductors,Chinese Academy of Sciences
文摘We propose and analyze a long-range dielectric-loaded surface plasmon polariton (SPP) waveguide based on graded-index ridge over server millimeter distances. Then the influence of the dielectric thickness and the ridge refractive index on propagation length and mode width is discussed and simulated with the finite ele- ment raethod. The result shows that the SPP can propagate as long as 3.42 mm, as well as the mode width keeping as 1.64μm, a better one compared with the fixed refractive index. Considering its nanoscale dimension and outstanding performance, the structure is easily realized when connected with electrodes.
基金the Knowledge Innovation Program of Chinese Academy of Sciences and the Specialized Research Foundation for the Gainer of Outstanding Doctoral Thesis and Presidential Scholarship of Chinese Academy of Sciences(No.076231J070)
文摘In order to realize wideband filtering properties of frequency selective surface (FSS), FSS of closely packed elements is presented. The Y loop elements are chosen as the graphics elements. Based on the spectral domain method, the frequency response is analyzed for different incident angles and polarizations. The result of the numerical analysis shows that the dense FSS has wide passband with better independence of angle and polarization.
基金supported by the National Natural Science Foundation of China (Nos. 11474097, 11274116, 11104178, 44108280, and 51132004)the National Special Science Research Program of China (No. 2011CB808105)
文摘This Letter reports the formation of periodic surface structures on Ni–Fe film irradiated by a single femtosecond laser pulse. A concave lens with a focus length of-150 mm is placed in front of an objective(100×, NA=0.9),which transforms the Gaussian laser field into a ring distribution by the Fresnel diffraction. Periodic ripples form on the ablation area after the irradiation of a single femtosecond laser pulse, which depends on the laser polarization and laser fluence. We propose that the ring structure of the laser field leads to a similar transient distribution of the permittivity on the sample surface, which further launches the surface plasmon polaritons. The interaction of the incident laser with surface plasmon polaritons dominates the formation of periodic surface structures.
基金supported by the National Natural Science Foundation of China under Grant Nos.11174080,11474099,and 11475063
文摘We propose a scheme to obtain a low-loss propagation of Airy surface plasmon polaritons (SPPs) along the interface between a dielectric and a negative-index metamaterial (NIMM). We show that by using the trans- verse-magnetic mode and the related destructive interference effect between electric and magnetic absorption responses, the propagation loss of the Airy SPPs can be largely suppressed when the optical frequency is close to the lossless point of the NIMM. As a result, the Airy SPPs obtained in our scheme can propagate more than a 6 times longer distance than that in conventional dielectric-metal interfaces.
基金the National Natural Science Foundation of China(No.61227014)the Ministry of Science and Technology of China(No.2011BAK15B03)
文摘We present an experimental study on a unidirectional surface plasmon polariton (SPP) launcher based on a compact binary area-coded nanohole array, where the symmetry breaking is realized via effective-index modulation in the binary pattern of the gold film, thus avoiding the challenge of modulating nanostructure in its depth. It is shown that SPPs can be unidirectionally and effectively excited at normal incidence. The SPP intensity and asymmetric excitation ratio, which are two key figure-of-merits of SPP launchers, can be improved by increasing the number of array rows. The proposed device is compatible with most mature top-town nanofabrieation techniques and thus is perspective for low-cost mass production.