With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h...With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.展开更多
Developing megahertz(MHz)electromagnetic wave(EMW)absorption materials with broadband absorption,multi-temperature adaptability,and facile preparation method remains a challenge.Herein,nanocrystalline FeCoNiCr_(0.4)Cu...Developing megahertz(MHz)electromagnetic wave(EMW)absorption materials with broadband absorption,multi-temperature adaptability,and facile preparation method remains a challenge.Herein,nanocrystalline FeCoNiCr_(0.4)Cu_(0.2) high-entropy alloy powders(HEAs)with both large aspect ratios and thin intergranular amorphous layers are constructed by a multistage mechanical alloying strategy,aiming to achieve excellent and temperature-stable permeability and EMW absorption.A single-phase face-centered cubic structure with good ductility and high crystallinity is obtained as wet milling precursors,via precisely controlling dry milling time.Then,HEAs are flattened to improve aspect ratios by synergistically regulating wet milling time.FeCoNiCr_(0.4)Cu_(0.2) HEAs with dry milling 20 h and wet milling 5 h(D20)exhibit higher and more stable permeability because of larger aspect ratios and thinner intergranular amorphous layers.The maximum reflection loss(RL)of D20/SiO_(2) composites is greater than-7 dB with 5 mm thickness,and EMW absorption bandwidth(RL<-7 dB)can maintain between 523 and 600 MHz from-50 to 150℃.Furthermore,relying on the“cocktail effect”of HEAs,D20 sample also exhibits excellent corrosion resistance and high Curie temperature.This work provides a facile and tunable strategy to design MHz electromagnetic absorbers with temperature stability,broadband,and resistance to harsh environments.展开更多
The construction of modern livable cities faces challenges in karst areas,including ground collapse and engineering problems.Wuhan,with a population of 13.74×10^(6) and approximately 1161 km^(2)of soluble rocks i...The construction of modern livable cities faces challenges in karst areas,including ground collapse and engineering problems.Wuhan,with a population of 13.74×10^(6) and approximately 1161 km^(2)of soluble rocks in the urban area of 8569.15 km^(2),predominantly consists of concealed karst areas where occasional ground collapse events occur,posing significant threats to underground engineering projects.To address these challenges,a comprehensive geological survey was conducted in Wuhan,focusing on major karstrelated issues.Geophysical methods offer advantages over drilling in detecting concealed karst areas due to their efficiency,non-destructiveness,and flexibility.This paper reviewed the karst geological characteristics in Wuhan and the geophysical exploration methods for karst,selected eight effective geophysical methods for field experimentation,evaluated their suitability,and proposed method combinations for different karst scenarios.The results show that different geophysical methods have varying applicability for karst detection in Wuhan,and combining multiple methods enhances detection effectiveness.The specific recommendations for method combinations provided in this study serve as a valuable reference for karst detection in Wuhan.展开更多
With the development of aerospace technology,the Mach number of aircraft continues to increase,which puts forward higher performance requirements for high-temperature wave-transparent materials.Silicon nitrides have e...With the development of aerospace technology,the Mach number of aircraft continues to increase,which puts forward higher performance requirements for high-temperature wave-transparent materials.Silicon nitrides have excellent mechanical properties,high-temperature stability,and oxidation resistance,but their brittleness and high dielectric constant impede their practical applications.Herein,by employing a template-assisted precursor pyrolysis method,we prepared a class of Si_(3)N_(4)@SiO_(2)nanowire aerogels(Si_(3)N_(4)@SiO_(2)NWAGs)that are assembled by Si_(3)N_(4)@SiO_(2)nanowires with diameters ranging from 386 to 631 nm.Si_(3)N_(4)@SiO_(2)NWAGs have low density of 12–31 mg∙cm^(−3),specific surface area of 4.13 m^(2)∙g^(−1),and average pore size of 68.9μm.Mechanical properties characterization shows that the aerogels exhibit reversible compressibility from 60%compressive strain and good fatigue resistance even when being compressed 100 times at set strain of 20%.The aerogels also show good thermal insulation performance(0.032 W·m^(−1)∙K^(−1) at room temperature),ablation resistance(butane blow torch),and high-temperature stability(maximum service temperature in air over 1200℃).The dielectric constant and loss of the aerogels are 1.02–1.06 and 4.3×10^(−5)–1.4×10^(−3) at room temperature,respectively.The combination of good mechanical,thermal,and dielectric properties makes Si_(3)N_(4)@SiO_(2)NWAGs promising ultralight wave-transparent and thermally insulating materials for applications at high temperatures.展开更多
Electromagnetic wave absorbing materials at high-temperature are urgently needed for stealth aircrafts or aero-engines worked in harsh environments.In this contribution,cobaltcontaining siliconboron carbonitride(MOF/S...Electromagnetic wave absorbing materials at high-temperature are urgently needed for stealth aircrafts or aero-engines worked in harsh environments.In this contribution,cobaltcontaining siliconboron carbonitride(MOF/SiBCN)nanomaterials were prepared by pyrolyzing metal–organic framework,i.e.cobalt 2-methylimidazole(ZIF-67),and hyperbranched polyborosilazane.The rhombic dodecahedral ZIF-67 and cobalt element promoted in situ formation of dielectric loss phases,including SiC nanocrystals,CoSi nanocrystals and turbostratic carbons.The ZIF-67/SiBCN nanomaterials showed excellent microwave absorption both at room and elevated temperature.The minimum reflection coefficient(RC_(min))was-51.6dB and effective absorption bandwidth(EAB)is 3.93GHz at room temperature.At an elevated temperature of 600℃,the RC_(min) reached-30.29 dB and EAB covered almost the whole X-band(3.95GHz,8.45–12.4GHz).The ZIF-67/SiBCN nanocomposites are promising and useful platform for microwave absorbing materials at high-temperature.It may shed light on the downstream applications in designing next generation areo-engines and stealth aircrafts.展开更多
By analysing the propagation law of electromagnetic wave,the distribution pattern of the field and the theory of frequency electromagnetic sounding,the physical mechanisms that make the frequency electromagnetic sound...By analysing the propagation law of electromagnetic wave,the distribution pattern of the field and the theory of frequency electromagnetic sounding,the physical mechanisms that make the frequency electromagnetic sounding in near-field zone difficult are discussed.Based on the theory of near source field,a new method of dual-frequency electromagnetic sounding of combination wave in near-field zone is advanced.Meanwhile,the method of measurement of fields,the definition of apparent resistivity and the numerical algorithm are approached.展开更多
基金sponsored by National Natural Science Foundation of China(No.52302121,No.52203386)Shanghai Sailing Program(No.23YF1454700)+1 种基金Shanghai Natural Science Foundation(No.23ZR1472700)Shanghai Post-doctoral Excellent Program(No.2022664).
文摘With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.
基金the Supported by Program for the National Natural Science Foundation of China(No.52071053,U1704253,52103334)China Postdoctoral Science Foundation(2020M670748,2020M680946)the Fundamental Research Funds for the Central Universities(DUT20GF111).
文摘Developing megahertz(MHz)electromagnetic wave(EMW)absorption materials with broadband absorption,multi-temperature adaptability,and facile preparation method remains a challenge.Herein,nanocrystalline FeCoNiCr_(0.4)Cu_(0.2) high-entropy alloy powders(HEAs)with both large aspect ratios and thin intergranular amorphous layers are constructed by a multistage mechanical alloying strategy,aiming to achieve excellent and temperature-stable permeability and EMW absorption.A single-phase face-centered cubic structure with good ductility and high crystallinity is obtained as wet milling precursors,via precisely controlling dry milling time.Then,HEAs are flattened to improve aspect ratios by synergistically regulating wet milling time.FeCoNiCr_(0.4)Cu_(0.2) HEAs with dry milling 20 h and wet milling 5 h(D20)exhibit higher and more stable permeability because of larger aspect ratios and thinner intergranular amorphous layers.The maximum reflection loss(RL)of D20/SiO_(2) composites is greater than-7 dB with 5 mm thickness,and EMW absorption bandwidth(RL<-7 dB)can maintain between 523 and 600 MHz from-50 to 150℃.Furthermore,relying on the“cocktail effect”of HEAs,D20 sample also exhibits excellent corrosion resistance and high Curie temperature.This work provides a facile and tunable strategy to design MHz electromagnetic absorbers with temperature stability,broadband,and resistance to harsh environments.
基金jointly supported by the project of Chinese National Natural Science Foundation(42107485)National Key R&D Program(2020YFC1512400,2018YFC800804)China Geological Survey(DD20190282,DD20221734,and DD20230323)。
文摘The construction of modern livable cities faces challenges in karst areas,including ground collapse and engineering problems.Wuhan,with a population of 13.74×10^(6) and approximately 1161 km^(2)of soluble rocks in the urban area of 8569.15 km^(2),predominantly consists of concealed karst areas where occasional ground collapse events occur,posing significant threats to underground engineering projects.To address these challenges,a comprehensive geological survey was conducted in Wuhan,focusing on major karstrelated issues.Geophysical methods offer advantages over drilling in detecting concealed karst areas due to their efficiency,non-destructiveness,and flexibility.This paper reviewed the karst geological characteristics in Wuhan and the geophysical exploration methods for karst,selected eight effective geophysical methods for field experimentation,evaluated their suitability,and proposed method combinations for different karst scenarios.The results show that different geophysical methods have varying applicability for karst detection in Wuhan,and combining multiple methods enhances detection effectiveness.The specific recommendations for method combinations provided in this study serve as a valuable reference for karst detection in Wuhan.
基金support from the National Natural Science Foundation of China(Nos.92263204,52072294,and 52102076).
文摘With the development of aerospace technology,the Mach number of aircraft continues to increase,which puts forward higher performance requirements for high-temperature wave-transparent materials.Silicon nitrides have excellent mechanical properties,high-temperature stability,and oxidation resistance,but their brittleness and high dielectric constant impede their practical applications.Herein,by employing a template-assisted precursor pyrolysis method,we prepared a class of Si_(3)N_(4)@SiO_(2)nanowire aerogels(Si_(3)N_(4)@SiO_(2)NWAGs)that are assembled by Si_(3)N_(4)@SiO_(2)nanowires with diameters ranging from 386 to 631 nm.Si_(3)N_(4)@SiO_(2)NWAGs have low density of 12–31 mg∙cm^(−3),specific surface area of 4.13 m^(2)∙g^(−1),and average pore size of 68.9μm.Mechanical properties characterization shows that the aerogels exhibit reversible compressibility from 60%compressive strain and good fatigue resistance even when being compressed 100 times at set strain of 20%.The aerogels also show good thermal insulation performance(0.032 W·m^(−1)∙K^(−1) at room temperature),ablation resistance(butane blow torch),and high-temperature stability(maximum service temperature in air over 1200℃).The dielectric constant and loss of the aerogels are 1.02–1.06 and 4.3×10^(−5)–1.4×10^(−3) at room temperature,respectively.The combination of good mechanical,thermal,and dielectric properties makes Si_(3)N_(4)@SiO_(2)NWAGs promising ultralight wave-transparent and thermally insulating materials for applications at high temperatures.
基金the grant from the National Natural Science Foundation of China(No.21875190)Innovation Team of Shaanxi Sanqin Scholars and the Natural Science Basic Research Plan for Distinguished Young Scholar in Shaanxi Province of China(No.2018JC-008)。
文摘Electromagnetic wave absorbing materials at high-temperature are urgently needed for stealth aircrafts or aero-engines worked in harsh environments.In this contribution,cobaltcontaining siliconboron carbonitride(MOF/SiBCN)nanomaterials were prepared by pyrolyzing metal–organic framework,i.e.cobalt 2-methylimidazole(ZIF-67),and hyperbranched polyborosilazane.The rhombic dodecahedral ZIF-67 and cobalt element promoted in situ formation of dielectric loss phases,including SiC nanocrystals,CoSi nanocrystals and turbostratic carbons.The ZIF-67/SiBCN nanomaterials showed excellent microwave absorption both at room and elevated temperature.The minimum reflection coefficient(RC_(min))was-51.6dB and effective absorption bandwidth(EAB)is 3.93GHz at room temperature.At an elevated temperature of 600℃,the RC_(min) reached-30.29 dB and EAB covered almost the whole X-band(3.95GHz,8.45–12.4GHz).The ZIF-67/SiBCN nanocomposites are promising and useful platform for microwave absorbing materials at high-temperature.It may shed light on the downstream applications in designing next generation areo-engines and stealth aircrafts.
基金supported by the National Natural Science Foundation of China(42102350)China Postdoctoral Science Foundation(No.2022M711442)+3 种基金Key R&D Plan of Shaanxi Province(Grant No.2023-YBGY-111)General Project of middling coal Technology and Industry Group(Grant No.2022-2-TD-MS005)Key Project of middling coal Technology and Industry Group(Grant No.2022-2-TD-ZD006)National Key R&D Plan Tasks(Grant No.2022YFC3005905-3).
基金Project supported by the Post-Doctoral Science Foundation and the Doctoral Fund of Education Commission of China.
文摘By analysing the propagation law of electromagnetic wave,the distribution pattern of the field and the theory of frequency electromagnetic sounding,the physical mechanisms that make the frequency electromagnetic sounding in near-field zone difficult are discussed.Based on the theory of near source field,a new method of dual-frequency electromagnetic sounding of combination wave in near-field zone is advanced.Meanwhile,the method of measurement of fields,the definition of apparent resistivity and the numerical algorithm are approached.