With the development of aerospace technology,the Mach number of aircraft continues to increase,which puts forward higher performance requirements for high-temperature wave-transparent materials.Silicon nitrides have e...With the development of aerospace technology,the Mach number of aircraft continues to increase,which puts forward higher performance requirements for high-temperature wave-transparent materials.Silicon nitrides have excellent mechanical properties,high-temperature stability,and oxidation resistance,but their brittleness and high dielectric constant impede their practical applications.Herein,by employing a template-assisted precursor pyrolysis method,we prepared a class of Si_(3)N_(4)@SiO_(2)nanowire aerogels(Si_(3)N_(4)@SiO_(2)NWAGs)that are assembled by Si_(3)N_(4)@SiO_(2)nanowires with diameters ranging from 386 to 631 nm.Si_(3)N_(4)@SiO_(2)NWAGs have low density of 12–31 mg∙cm^(−3),specific surface area of 4.13 m^(2)∙g^(−1),and average pore size of 68.9μm.Mechanical properties characterization shows that the aerogels exhibit reversible compressibility from 60%compressive strain and good fatigue resistance even when being compressed 100 times at set strain of 20%.The aerogels also show good thermal insulation performance(0.032 W·m^(−1)∙K^(−1) at room temperature),ablation resistance(butane blow torch),and high-temperature stability(maximum service temperature in air over 1200℃).The dielectric constant and loss of the aerogels are 1.02–1.06 and 4.3×10^(−5)–1.4×10^(−3) at room temperature,respectively.The combination of good mechanical,thermal,and dielectric properties makes Si_(3)N_(4)@SiO_(2)NWAGs promising ultralight wave-transparent and thermally insulating materials for applications at high temperatures.展开更多
基金support from the National Natural Science Foundation of China(Nos.92263204,52072294,and 52102076).
文摘With the development of aerospace technology,the Mach number of aircraft continues to increase,which puts forward higher performance requirements for high-temperature wave-transparent materials.Silicon nitrides have excellent mechanical properties,high-temperature stability,and oxidation resistance,but their brittleness and high dielectric constant impede their practical applications.Herein,by employing a template-assisted precursor pyrolysis method,we prepared a class of Si_(3)N_(4)@SiO_(2)nanowire aerogels(Si_(3)N_(4)@SiO_(2)NWAGs)that are assembled by Si_(3)N_(4)@SiO_(2)nanowires with diameters ranging from 386 to 631 nm.Si_(3)N_(4)@SiO_(2)NWAGs have low density of 12–31 mg∙cm^(−3),specific surface area of 4.13 m^(2)∙g^(−1),and average pore size of 68.9μm.Mechanical properties characterization shows that the aerogels exhibit reversible compressibility from 60%compressive strain and good fatigue resistance even when being compressed 100 times at set strain of 20%.The aerogels also show good thermal insulation performance(0.032 W·m^(−1)∙K^(−1) at room temperature),ablation resistance(butane blow torch),and high-temperature stability(maximum service temperature in air over 1200℃).The dielectric constant and loss of the aerogels are 1.02–1.06 and 4.3×10^(−5)–1.4×10^(−3) at room temperature,respectively.The combination of good mechanical,thermal,and dielectric properties makes Si_(3)N_(4)@SiO_(2)NWAGs promising ultralight wave-transparent and thermally insulating materials for applications at high temperatures.