In this paper, we study electromagnetic (EM) wave scattering problem by many small impedance bodies. A numerical method for solving this problem is presented. The problem is solved under the physical assumptions ka??1...In this paper, we study electromagnetic (EM) wave scattering problem by many small impedance bodies. A numerical method for solving this problem is presented. The problem is solved under the physical assumptions ka??1, where a is the characteristic size of the bodies and k is the wave number. This problem is solved asymptotically and numerical experiments are provided to illustrate the idea of the method. Error estimate for the asymptotic solution is also discussed.展开更多
In this paper, we investigate the problem of electromagnetic (EM) wave scattering by one and many small perfectly conducting bodies and present a numerical method for solving it. For the case of one body, the problem ...In this paper, we investigate the problem of electromagnetic (EM) wave scattering by one and many small perfectly conducting bodies and present a numerical method for solving it. For the case of one body, the problem is solved for a body of arbitrary shape, using the corresponding boundary integral equation. For the case of many bodies, the problem is solved asymptotically under the physical assumptions a d a is the characteristic size of the bodies, d is the minimal distance between neighboring bodies, λ = 2π/k is the wave length and k is the wave number. Numerical results for the cases of one and many small bodies are presented. Error analysis for the numerical method is also provided.展开更多
The scattering of an electromagnetic high-order Bessel trigonometric beam by several typical homogeneous dielec- tric particles is investigated. The incident beam is represented by the vector expressions in Cartesian ...The scattering of an electromagnetic high-order Bessel trigonometric beam by several typical homogeneous dielec- tric particles is investigated. The incident beam is represented by the vector expressions in Cartesian coordinates. The scattering problems involving homogeneous dielectric particles are formulated with the surface integral equation method. As an example, the effects of the beam's parameters on the differential scattering cross section for a sphere are analyzed in detail. Then the numerical results for the scattering of a high-order Bessel trigonometric beam by three typical nonspherieal particles, including a spheroid, a cylinder, and a cube, are presented.展开更多
An iterative physical optics(IPO) model is proposed to solve extra large scale electric electromagnetic(EM) scattering from randomly rough surfaces. In order to accelerate the convergence of the IPO model, the for...An iterative physical optics(IPO) model is proposed to solve extra large scale electric electromagnetic(EM) scattering from randomly rough surfaces. In order to accelerate the convergence of the IPO model, the forward-backward methodology and its modification with underrelaxation iteration are developed to simulate the rough surface scattering; the local iteration methodology and the fast far field approximation(Fa FFA) in the matrix-vector product are proposed to reduce greatly the computational complexity. These techniques make Monte Carlo simulations possible. Thus, the average Doppler spectra of backscattered signals obtained from the simulations are compared for different incident angles and sea states. In particular, the simulations show a broadening of the Doppler spectra for a more complicated sea state at a low grazing angle(LGA).展开更多
Herein,a three-dimensional(3D)inversion method in the frequency domain based on a time–frequency transformation was developed to improve the efficiency of the 3D inversion of transient electromagnetic(TEM)data.The Fo...Herein,a three-dimensional(3D)inversion method in the frequency domain based on a time–frequency transformation was developed to improve the efficiency of the 3D inversion of transient electromagnetic(TEM)data.The Fourier transform related to the electromagnetic response in the frequency and time domains becomes a sine or cosine transform under the excitation of downward-step current.We established a transformation matrix based on the digital fi ltering calculation for the sine transform,and then the frequency domain projection of the TEM data was determined from the linear transformation system using the smoothing constrained least squares inversion method,in which only the imaginary part was used to maintain the TEM data transformation equivalence in the bidirectional projection.Thus,the time-domain TEM inversion problem was indirectly and effectively solved in the frequency domain.In the 3D inversion of the transformed frequency-domain data,the limited-memory Broyden–Fletcher–Goldfarb–Shannoquasi–Newton(L-BFGS)method was used and modifi ed with a restart strategy to adjust the regularization parameter when the algorithm tended to a local minimum.Synthetic data tests showed that our domain transformation method can stably project the TEM data into the frequency domain with very high accuracy;furthe rmore,the 3D inversion of the transformed frequency-domain data is stable,can be used to recover the real resistivity model with an acceptable effi ciency.展开更多
A plasma-based stable,ultra-wideband electromagnetic(EM) wave absorber structure is studied in this paper for stealth applications.The stability is maintained by a multi-layer structure with several plasma layers an...A plasma-based stable,ultra-wideband electromagnetic(EM) wave absorber structure is studied in this paper for stealth applications.The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately.The plasma in each plasma layer is designed to be uniform,whereas it has a discrete nonuniform distribution from the overall view of the structure.The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption.A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers,by which the wave absorption range is extended to the ultra-wideband.Then,the scattering matrix method(SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure.In the simulation,the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case.Then,the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail,verifying the EM wave absorption performance of the absorber.The proposed structure and model are expected to be superior in some realistic applications,such as supersonic aircraft.展开更多
Among the different available wind sources, i.e. in situ measurements, numeric weather models, the retrieval of wind speed from Synthetic Aperture Radar (SAR) data is one of the most widely used methods, since it can ...Among the different available wind sources, i.e. in situ measurements, numeric weather models, the retrieval of wind speed from Synthetic Aperture Radar (SAR) data is one of the most widely used methods, since it can give high wind resolution cells. For this purpose, one can find two principal approaches: via electromagnetic (EM) models and empirical (EP) models. In both approaches, the Geophysical Model Functions (GMFs) are used to describe the relation of radar scattering, wind speed, and the geometry of observations. By knowing radar scattering and geometric parameters, it is possible to invert the GMFs to retrieve wind speed. It is very interesting to compare wind speed estimated by the EM models, general descriptions of radar scattering from sea surface, to the one estimated by the EP models, specific descriptions for the inverse problem. Based on the comparisons, some ideas are proposed to improve the performance of the EM models for wind speed retrieval.展开更多
A new method for solving the inner and outer radii of the 2-concentric-layer dielectric sphere is presented on the basis of the exact electromagnetic theory of scattering. Characteristic functions are introduced, of w...A new method for solving the inner and outer radii of the 2-concentric-layer dielectric sphere is presented on the basis of the exact electromagnetic theory of scattering. Characteristic functions are introduced, of which the extremum property gives the required radius uniquely. Numerical investigations also reveal some special properties of these functions which facilitate the determination of a0 and a1 when both of them are unknown.展开更多
In this paper a new approach for microwave imaging of unknown objects embedded in the freespace from phaseless data is presented. Firstly a cost functional is constructed by using the measured amplitude of the total f...In this paper a new approach for microwave imaging of unknown objects embedded in the freespace from phaseless data is presented. Firstly a cost functional is constructed by using the measured amplitude of the total field, which is the norm of the discrepancy between the measured amplitude and the calculated one. Then both the amplitude and phase of the scattered field are retrieved by minimizing the above cost functional. Finally, the geometrical and electrical parameters are reconstructed by using the retrieved scattered field. The phase retrieval process can be achieved in a very short time without adding any burden to the whole inverse scattering problem. The equivalent current density is introduced to reduce the nonlinearity of the inverse problem. The reconstruction of the non-radiating component of the equivalent current density improves the imaging quality. Experimental results are presented for the first time to show the feasibility of inverse scattering from phaseless data. The experimental results also show the validity and stability of the proposed method.展开更多
In this paper,we consider the scattering problem of time-harmonic electromagnetic waves from an infinite cylinder having an open arc Γ and a bounded domain D in R^2 as cross section.We focus on the inverse scattering...In this paper,we consider the scattering problem of time-harmonic electromagnetic waves from an infinite cylinder having an open arc Γ and a bounded domain D in R^2 as cross section.We focus on the inverse scattering problem,that is,to reconstruct the shape of Γ and D from the far-field pattern by using the factorization method.Through establishing a mixed reciprocity relation,we prove that the scatters Γ and D can be uniquely determined by the far-field pattern.Furthermore,the mathematical basis is given to explain that the factorization method is feasible to our problem.At the end of this paper,we give some numerical examples to show the efficaciousness of the algorithms.展开更多
文摘In this paper, we study electromagnetic (EM) wave scattering problem by many small impedance bodies. A numerical method for solving this problem is presented. The problem is solved under the physical assumptions ka??1, where a is the characteristic size of the bodies and k is the wave number. This problem is solved asymptotically and numerical experiments are provided to illustrate the idea of the method. Error estimate for the asymptotic solution is also discussed.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2008AA04Z214) and National Natural Science Foundation of China (2008BAF36B01)
文摘In this paper, we investigate the problem of electromagnetic (EM) wave scattering by one and many small perfectly conducting bodies and present a numerical method for solving it. For the case of one body, the problem is solved for a body of arbitrary shape, using the corresponding boundary integral equation. For the case of many bodies, the problem is solved asymptotically under the physical assumptions a d a is the characteristic size of the bodies, d is the minimal distance between neighboring bodies, λ = 2π/k is the wave length and k is the wave number. Numerical results for the cases of one and many small bodies are presented. Error analysis for the numerical method is also provided.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61308026 and 61431010the Fundamental Research Funds for the Central Universities of China under Grant No K5051307003
文摘The scattering of an electromagnetic high-order Bessel trigonometric beam by several typical homogeneous dielec- tric particles is investigated. The incident beam is represented by the vector expressions in Cartesian coordinates. The scattering problems involving homogeneous dielectric particles are formulated with the surface integral equation method. As an example, the effects of the beam's parameters on the differential scattering cross section for a sphere are analyzed in detail. Then the numerical results for the scattering of a high-order Bessel trigonometric beam by three typical nonspherieal particles, including a spheroid, a cylinder, and a cube, are presented.
基金supported by the National Natural Science Foundation of China(61372033)
文摘An iterative physical optics(IPO) model is proposed to solve extra large scale electric electromagnetic(EM) scattering from randomly rough surfaces. In order to accelerate the convergence of the IPO model, the forward-backward methodology and its modification with underrelaxation iteration are developed to simulate the rough surface scattering; the local iteration methodology and the fast far field approximation(Fa FFA) in the matrix-vector product are proposed to reduce greatly the computational complexity. These techniques make Monte Carlo simulations possible. Thus, the average Doppler spectra of backscattered signals obtained from the simulations are compared for different incident angles and sea states. In particular, the simulations show a broadening of the Doppler spectra for a more complicated sea state at a low grazing angle(LGA).
基金the National Key Research and Development Program of China(No.2016YFC060110403).
文摘Herein,a three-dimensional(3D)inversion method in the frequency domain based on a time–frequency transformation was developed to improve the efficiency of the 3D inversion of transient electromagnetic(TEM)data.The Fourier transform related to the electromagnetic response in the frequency and time domains becomes a sine or cosine transform under the excitation of downward-step current.We established a transformation matrix based on the digital fi ltering calculation for the sine transform,and then the frequency domain projection of the TEM data was determined from the linear transformation system using the smoothing constrained least squares inversion method,in which only the imaginary part was used to maintain the TEM data transformation equivalence in the bidirectional projection.Thus,the time-domain TEM inversion problem was indirectly and effectively solved in the frequency domain.In the 3D inversion of the transformed frequency-domain data,the limited-memory Broyden–Fletcher–Goldfarb–Shannoquasi–Newton(L-BFGS)method was used and modifi ed with a restart strategy to adjust the regularization parameter when the algorithm tended to a local minimum.Synthetic data tests showed that our domain transformation method can stably project the TEM data into the frequency domain with very high accuracy;furthe rmore,the 3D inversion of the transformed frequency-domain data is stable,can be used to recover the real resistivity model with an acceptable effi ciency.
基金supported in part by the National Basic Research Program of China (grant no.2014CB340205)in part by the Science and Technology on Space Physics Laboratory Fundsin part by the Fundamental Research Funds for the Central Universities (20101156180)
文摘A plasma-based stable,ultra-wideband electromagnetic(EM) wave absorber structure is studied in this paper for stealth applications.The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately.The plasma in each plasma layer is designed to be uniform,whereas it has a discrete nonuniform distribution from the overall view of the structure.The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption.A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers,by which the wave absorption range is extended to the ultra-wideband.Then,the scattering matrix method(SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure.In the simulation,the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case.Then,the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail,verifying the EM wave absorption performance of the absorber.The proposed structure and model are expected to be superior in some realistic applications,such as supersonic aircraft.
文摘Among the different available wind sources, i.e. in situ measurements, numeric weather models, the retrieval of wind speed from Synthetic Aperture Radar (SAR) data is one of the most widely used methods, since it can give high wind resolution cells. For this purpose, one can find two principal approaches: via electromagnetic (EM) models and empirical (EP) models. In both approaches, the Geophysical Model Functions (GMFs) are used to describe the relation of radar scattering, wind speed, and the geometry of observations. By knowing radar scattering and geometric parameters, it is possible to invert the GMFs to retrieve wind speed. It is very interesting to compare wind speed estimated by the EM models, general descriptions of radar scattering from sea surface, to the one estimated by the EP models, specific descriptions for the inverse problem. Based on the comparisons, some ideas are proposed to improve the performance of the EM models for wind speed retrieval.
文摘A new method for solving the inner and outer radii of the 2-concentric-layer dielectric sphere is presented on the basis of the exact electromagnetic theory of scattering. Characteristic functions are introduced, of which the extremum property gives the required radius uniquely. Numerical investigations also reveal some special properties of these functions which facilitate the determination of a0 and a1 when both of them are unknown.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 60701010, 40774093)the Knowledge Innovation Program of Chinese Academy of Sciences
文摘In this paper a new approach for microwave imaging of unknown objects embedded in the freespace from phaseless data is presented. Firstly a cost functional is constructed by using the measured amplitude of the total field, which is the norm of the discrepancy between the measured amplitude and the calculated one. Then both the amplitude and phase of the scattered field are retrieved by minimizing the above cost functional. Finally, the geometrical and electrical parameters are reconstructed by using the retrieved scattered field. The phase retrieval process can be achieved in a very short time without adding any burden to the whole inverse scattering problem. The equivalent current density is introduced to reduce the nonlinearity of the inverse problem. The reconstruction of the non-radiating component of the equivalent current density improves the imaging quality. Experimental results are presented for the first time to show the feasibility of inverse scattering from phaseless data. The experimental results also show the validity and stability of the proposed method.
基金the National Naturel Science Foundation(NNSF)of China grant 11601138NNSF of China grant 11571132.
文摘In this paper,we consider the scattering problem of time-harmonic electromagnetic waves from an infinite cylinder having an open arc Γ and a bounded domain D in R^2 as cross section.We focus on the inverse scattering problem,that is,to reconstruct the shape of Γ and D from the far-field pattern by using the factorization method.Through establishing a mixed reciprocity relation,we prove that the scatters Γ and D can be uniquely determined by the far-field pattern.Furthermore,the mathematical basis is given to explain that the factorization method is feasible to our problem.At the end of this paper,we give some numerical examples to show the efficaciousness of the algorithms.