A plasmonic waveguide coupled system that is composed of a square ring cavity and a metal-insulator-metal (MIM) waveguide with two silver baffles is proposed. The transmission and reflection properties of the propos...A plasmonic waveguide coupled system that is composed of a square ring cavity and a metal-insulator-metal (MIM) waveguide with two silver baffles is proposed. The transmission and reflection properties of the proposed plasmonic system are investigated numerically using the finite element method. The normalized Hz field distributions are calculated to analyze the transmission mode in the plasmonic system. The extreme destructive interference between light mode and dark mode causes plasmonically induced reflection (PIR) window in the transmission spectrum. The PIR window is fitted using the coupled mode theory. The analytical result agrees with the simulation result approximately. In addition, the PIR window can be controlled by adjusting structural parameters and filling different dielectric into the MIM waveguide and the square ring cavity. The results provide a new approach to designing plasmonic devices.展开更多
We report a systematic investigation on c-axis point-contact Andreev reflection (PCAR) in BaFe2-xNixAs2 superconducting single crystals from underdoped to overdoped regions (0.075≤ x ≤0.15). At low temperatures,...We report a systematic investigation on c-axis point-contact Andreev reflection (PCAR) in BaFe2-xNixAs2 superconducting single crystals from underdoped to overdoped regions (0.075≤ x ≤0.15). At low temperatures, an in-gap sharp peak at low-bias voltage is observed in PCAR for overdoped samples, in contrast to the case of underdoped junctions, in which an in-gap plateau is observed. The variety of the conductance spectra with doping can be well described by using a generalized Blonder-Tinkham-Klapwijk formalism with an angle-dependent gap. This gap shows a clear crossover from a nodeless in the underdoped side to a nodal feature in the overdoped region. This result provides evidence of the doping-induced evolution of the superconducting order parameter when the inter-pocket and intra-pocket scattering are tuned through doping, as expected in the s± scenario.展开更多
A reflection-type electromagnetically induced transparency(EIT) metamaterial is proposed, which is composed of a dielectric spacer sandwiched with metallic patterns and metallic plane. Experimental results of THz ti...A reflection-type electromagnetically induced transparency(EIT) metamaterial is proposed, which is composed of a dielectric spacer sandwiched with metallic patterns and metallic plane. Experimental results of THz time domain spectrum(THz-TDS) exhibit a typical reflection of EIT at 0.865 THz, which are in excellent agreement with the full-wave simulations. A multi-reflection theory is adopted to analyze the physical mechanism of the reflection-type EIT, showing that the reflection-type EIT is a superposition of multiple reflection of the transmission EIT. Such a reflection-type EIT provides many applications based on the EIT effect, such as slow light devices and nonlinear elements.展开更多
The electromagnetically induced reflection(EIR)effect of graphene metamaterials has been investigated by finite difference time domain(FDTD)method.In this study,a metamaterial sandwich structure composed of silica(SiO...The electromagnetically induced reflection(EIR)effect of graphene metamaterials has been investigated by finite difference time domain(FDTD)method.In this study,a metamaterial sandwich structure composed of silica(SiO2),gold and graphene on terahertz band is designed.By changing the width of the two ribbons of graphene length and the incident angle of electromagnetic wave,the EIR effect of the structure is discussed,and it can be found that SiO2 is a kind of excellent dielectric material.The simulation results show that graphene metamaterial is not sensitive to polarized incident electromagnetic wave.Therefore,such EIR phenomena as insensitive polarization and large incident angle can be applied to optical communication filters and terahertz devices.展开更多
A kind of photonic crystal structure with modulation of the refractive index is investigated both experimentally and theoretically for exploiting electromagnetically induced transparency(EIT).The combination of EIT ...A kind of photonic crystal structure with modulation of the refractive index is investigated both experimentally and theoretically for exploiting electromagnetically induced transparency(EIT).The combination of EIT with periodically modulated refractive index medium gives rise to high efficiency reflection as well as forbidden transmission in a threelevel atomic system coupled by standing wave.We show an accurate theoretical simulation via transfer-matrix theory,automatically accounting for multilayer reflections,thus fully demonstrate the existence of photonic crystal structure in atomic vapor.展开更多
We have studied the characteristics of current-induced nonequilibrium spin polarization in semiconductor-nanowire/swave superconductor junctions with strong spin–orbit coupling. It was found that within some paramete...We have studied the characteristics of current-induced nonequilibrium spin polarization in semiconductor-nanowire/swave superconductor junctions with strong spin–orbit coupling. It was found that within some parameter regions the magnitude of the current-induced nonequilibrium spin polarization density in such structures will increase(or decrease) with the decrease(or increase) of the charge current density, in contrast to that found in normal spin–orbit coupled semiconductor structures. It was also found that the unusual characteristics of the current-induced nonequilibrium spin polarization in such structures can be well explained by the effect of the Andreev reflection.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61605177,61275166,and 11504139)the National Science Fund for Distinguished Young Scholars,China(Grant No.61525107)+4 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20140167)the Natural Science Foundation of Shanxi Province,China(Grant No.201601D011008)the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province,Chinathe Program for the Top Young and Middle-aged Innovative Talents of Higher Learning Institutions of Shanxi Province,Chinathe North University of China Science Fund for Distinguished Young Scholars
文摘A plasmonic waveguide coupled system that is composed of a square ring cavity and a metal-insulator-metal (MIM) waveguide with two silver baffles is proposed. The transmission and reflection properties of the proposed plasmonic system are investigated numerically using the finite element method. The normalized Hz field distributions are calculated to analyze the transmission mode in the plasmonic system. The extreme destructive interference between light mode and dark mode causes plasmonically induced reflection (PIR) window in the transmission spectrum. The PIR window is fitted using the coupled mode theory. The analytical result agrees with the simulation result approximately. In addition, the PIR window can be controlled by adjusting structural parameters and filling different dielectric into the MIM waveguide and the square ring cavity. The results provide a new approach to designing plasmonic devices.
基金Supported by the National Basic Research Program of China under Grant Nos 2011CBA00100 and 2012CB821404the Project of International Team on Superconductivity and Novel Electronic Materials of Chinese Academy of Sciences
文摘We report a systematic investigation on c-axis point-contact Andreev reflection (PCAR) in BaFe2-xNixAs2 superconducting single crystals from underdoped to overdoped regions (0.075≤ x ≤0.15). At low temperatures, an in-gap sharp peak at low-bias voltage is observed in PCAR for overdoped samples, in contrast to the case of underdoped junctions, in which an in-gap plateau is observed. The variety of the conductance spectra with doping can be well described by using a generalized Blonder-Tinkham-Klapwijk formalism with an angle-dependent gap. This gap shows a clear crossover from a nodeless in the underdoped side to a nodal feature in the overdoped region. This result provides evidence of the doping-induced evolution of the superconducting order parameter when the inter-pocket and intra-pocket scattering are tuned through doping, as expected in the s± scenario.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61205096 and 61271066)
文摘A reflection-type electromagnetically induced transparency(EIT) metamaterial is proposed, which is composed of a dielectric spacer sandwiched with metallic patterns and metallic plane. Experimental results of THz time domain spectrum(THz-TDS) exhibit a typical reflection of EIT at 0.865 THz, which are in excellent agreement with the full-wave simulations. A multi-reflection theory is adopted to analyze the physical mechanism of the reflection-type EIT, showing that the reflection-type EIT is a superposition of multiple reflection of the transmission EIT. Such a reflection-type EIT provides many applications based on the EIT effect, such as slow light devices and nonlinear elements.
基金Research Project of Anhui Province Education Department(No.KJ2020A0684)Innovation and Entrepreneurship Training Program for College Students(Nos.S201910375072,201910375050,201910375052,202010375030)。
文摘The electromagnetically induced reflection(EIR)effect of graphene metamaterials has been investigated by finite difference time domain(FDTD)method.In this study,a metamaterial sandwich structure composed of silica(SiO2),gold and graphene on terahertz band is designed.By changing the width of the two ribbons of graphene length and the incident angle of electromagnetic wave,the EIR effect of the structure is discussed,and it can be found that SiO2 is a kind of excellent dielectric material.The simulation results show that graphene metamaterial is not sensitive to polarized incident electromagnetic wave.Therefore,such EIR phenomena as insensitive polarization and large incident angle can be applied to optical communication filters and terahertz devices.
基金Project supported by the National Natural Science Foundation of China(Grant No.11574188)the Project for Excellent Research Team of the National Natural Science Foundation of China(Grant No.61121064)
文摘A kind of photonic crystal structure with modulation of the refractive index is investigated both experimentally and theoretically for exploiting electromagnetically induced transparency(EIT).The combination of EIT with periodically modulated refractive index medium gives rise to high efficiency reflection as well as forbidden transmission in a threelevel atomic system coupled by standing wave.We show an accurate theoretical simulation via transfer-matrix theory,automatically accounting for multilayer reflections,thus fully demonstrate the existence of photonic crystal structure in atomic vapor.
基金Project supported by the National Natural Science Foundation of China(Grant No.11474106)
文摘We have studied the characteristics of current-induced nonequilibrium spin polarization in semiconductor-nanowire/swave superconductor junctions with strong spin–orbit coupling. It was found that within some parameter regions the magnitude of the current-induced nonequilibrium spin polarization density in such structures will increase(or decrease) with the decrease(or increase) of the charge current density, in contrast to that found in normal spin–orbit coupled semiconductor structures. It was also found that the unusual characteristics of the current-induced nonequilibrium spin polarization in such structures can be well explained by the effect of the Andreev reflection.