This study analyzed the difference between using a downward breaststroke kick and a horizontal breaststroke kick in a sample of world class elite swimmers.We compared average muscle activity of the gluteus maximus,qua...This study analyzed the difference between using a downward breaststroke kick and a horizontal breaststroke kick in a sample of world class elite swimmers.We compared average muscle activity of the gluteus maximus,quadriceps femoris(vastus medialis and rectus femoris),hamstring/long head of the biceps femoris,gastrocnemius medialis,rectus abdominal,and erector spinae when using the downward breaststroke kick technique.We find that when this sample of swimmers utilized the downward breaststroke kick,max speed and velocity per stroke increased,measured by 12,788 EMG samples,where the results are highly correlated to duration of the aerodynamic buoyant force in breaststroke kick technique.The increases in performance observed from measuring the world class elite swimmers is highly correlated to the duration of the kick aerodynamic buoyant force.Among this sample of elite swimmers,the longer a swimmer demonstrates a buoyant force breaststroke kick,the lower the time in a 100 breaststroke.展开更多
The human-computer interaction (HCI) is now playing a great role in computer technology. This study introduces an automatic document control technique which is based on the human hand waving movements. The recognition...The human-computer interaction (HCI) is now playing a great role in computer technology. This study introduces an automatic document control technique which is based on the human hand waving movements. The recognition of hand movement is realized according to the surface electromyography (sEMG). A collector is set on the forearm. The sEMG signal is recorded and conveyed to a PC terminal by using wireless Zigbee. An automatic algorithm is developed in order to extract the characteristics of sEMG, recognize the waving movements, and transmit to document control command. The developed human-computer interaction technique can be used as a new gallery for teaching, as well as an assistant tool for disabled person.展开更多
The automatic detection of noisy channels in surface Electromyogram(sEMG)signals,at the time of recording,is very critical in making a noise-free EMG dataset.If an EMG signal contaminated by high-level noise is record...The automatic detection of noisy channels in surface Electromyogram(sEMG)signals,at the time of recording,is very critical in making a noise-free EMG dataset.If an EMG signal contaminated by high-level noise is recorded,then it will be useless and can’t be used for any healthcare application.In this research work,a new machine learning-based paradigm is proposed to automate the detection of low-level and high-level noises occurring in different channels of high density and multi-channel sEMG signals.A modified version of mel fre-quency cepstral coefficients(mMFCC)is proposed for the extraction of features from sEMG channels along with other statistical parameters i-e complexity coef-ficient,hurst exponent,and root mean square.Several state-of-the-art classifiers such as Support Vector Machine(SVM),Ensemble Bagged Trees,Ensemble Sub-space Discriminant,and Logistic Regression are used to automatically identify an EMG channel either bad or good based on these extracted features.Comparison-based analyses of these classifiers have also been considered based on total classi-fication accuracy,prediction speed(observations/sec),and processing time.The proposed method is tested on 320 simulated EMG channels as well as 640 experi-mental EMG channels.SVM is used as our main classifier for the detection of noisy channels which gives a total classification accuracy of 99.4%for simulated EMG channels whereas accuracy of 98.9%is achieved for experimental EMG channels.展开更多
文摘This study analyzed the difference between using a downward breaststroke kick and a horizontal breaststroke kick in a sample of world class elite swimmers.We compared average muscle activity of the gluteus maximus,quadriceps femoris(vastus medialis and rectus femoris),hamstring/long head of the biceps femoris,gastrocnemius medialis,rectus abdominal,and erector spinae when using the downward breaststroke kick technique.We find that when this sample of swimmers utilized the downward breaststroke kick,max speed and velocity per stroke increased,measured by 12,788 EMG samples,where the results are highly correlated to duration of the aerodynamic buoyant force in breaststroke kick technique.The increases in performance observed from measuring the world class elite swimmers is highly correlated to the duration of the kick aerodynamic buoyant force.Among this sample of elite swimmers,the longer a swimmer demonstrates a buoyant force breaststroke kick,the lower the time in a 100 breaststroke.
文摘The human-computer interaction (HCI) is now playing a great role in computer technology. This study introduces an automatic document control technique which is based on the human hand waving movements. The recognition of hand movement is realized according to the surface electromyography (sEMG). A collector is set on the forearm. The sEMG signal is recorded and conveyed to a PC terminal by using wireless Zigbee. An automatic algorithm is developed in order to extract the characteristics of sEMG, recognize the waving movements, and transmit to document control command. The developed human-computer interaction technique can be used as a new gallery for teaching, as well as an assistant tool for disabled person.
文摘为了提高表面肌电信号(surface electromyography,sEMG)的手势分类准确率,通过惯性测量单元(inertial measurement unit,IMU)与采集姿态信号与sEMG的混合信号,提出了GRUBiLSTM双层网络的实时手势分类算法。第1层门控循环单元(gated recurrent unit,GRU)利用能量组合算子特征对混合信号进行突变点检测,定位运动态数据起始点;第2层双向长短时记忆循环神经网络(Bi-directional long short term memory,BiLSTM)使用能量核相图特征对运动态混合信号进行2个方向10种手势的分类。通过离线模型优化,分类算法识别时间低于40 ms,突变点检测精度88.7%以上,手势分类准确率为85%,信息传输率(informationtranslaterate, ITR)达到89.9 bits/min,与基于机器学习的分类算法相比,在准确率与计算效率上具有优势。
基金support from the Deanship of Scientific Research,Najran University.Kingdom of Saudi Arabia,for funding this work under the research groups funding program Grant Code Number(NU/RG/SERC/11/3).
文摘The automatic detection of noisy channels in surface Electromyogram(sEMG)signals,at the time of recording,is very critical in making a noise-free EMG dataset.If an EMG signal contaminated by high-level noise is recorded,then it will be useless and can’t be used for any healthcare application.In this research work,a new machine learning-based paradigm is proposed to automate the detection of low-level and high-level noises occurring in different channels of high density and multi-channel sEMG signals.A modified version of mel fre-quency cepstral coefficients(mMFCC)is proposed for the extraction of features from sEMG channels along with other statistical parameters i-e complexity coef-ficient,hurst exponent,and root mean square.Several state-of-the-art classifiers such as Support Vector Machine(SVM),Ensemble Bagged Trees,Ensemble Sub-space Discriminant,and Logistic Regression are used to automatically identify an EMG channel either bad or good based on these extracted features.Comparison-based analyses of these classifiers have also been considered based on total classi-fication accuracy,prediction speed(observations/sec),and processing time.The proposed method is tested on 320 simulated EMG channels as well as 640 experi-mental EMG channels.SVM is used as our main classifier for the detection of noisy channels which gives a total classification accuracy of 99.4%for simulated EMG channels whereas accuracy of 98.9%is achieved for experimental EMG channels.