Since the position of the electron in a hydrogen atom cannot be determined, the region in which it resides is said to be determined stochastically and forms an electron cloud. The probability density function of the s...Since the position of the electron in a hydrogen atom cannot be determined, the region in which it resides is said to be determined stochastically and forms an electron cloud. The probability density function of the single electron in 1s orbit is expressed as φ2, a function of distance from the nucleus. However, the probability of existence of the electron is expressed as a radial distribution function at an arbitrary distance from the nucleus, so it is estimated as the probability of the entire spherical shape of that radius. In this study, it has been found that the electron existence probability approximates the radial distribution function by assuming that the probability of existence of the electron being in the vicinity of the nucleus follows a normal distribution for arbitrary x-, y-, and z-axis directions. This implies that the probability of existence of the electron, which has been known only from the distance information, would follow a normal distribution independently in the three directions. When the electrons’ motion is extremely restricted in a certain direction by the magnetic field of both tokamak and helical fusion reactors, the probability of existence of the electron increases with proximity to the nucleus, and as a result, it is less likely to be liberated from the nucleus. Therefore, more and more energy is required to free the nucleus from the electron in order to generate plasma.展开更多
The wave equation of the electron, recently improved, allows physics to obtain all the quantum numbers and other results explaining the hydrogen spectrum. The Pauli exclusion principle then gives the description of el...The wave equation of the electron, recently improved, allows physics to obtain all the quantum numbers and other results explaining the hydrogen spectrum. The Pauli exclusion principle then gives the description of electron clouds used in chemistry. The relativistic wave equation is associated with a Lagrangian density, thus also with an energy-momentum tensorial density. The wave of an electron cloud adds these energy-momentum densities, while photons in light are precisely those differences between such energy-momentum densities.展开更多
Cloud storage represents the trend of intensive,scale and specialization of information technology,which has changed the technical architecture and implementation method of electronic records management.Moreover,it wi...Cloud storage represents the trend of intensive,scale and specialization of information technology,which has changed the technical architecture and implementation method of electronic records management.Moreover,it will provide a convenient way to generate more advanced and efficient management of the electronic data records.However,in cloud storage environment,it is difficult to guarantee the trustworthiness of electronic records,which results in a series of severe challenges to electronic records management.Starting from the definition and specification of electronic records,this paper firstly analyzes the requirements of the trustworthiness in cloud storage during their long-term preservation according to the information security theory and subdivides the trustworthiness into the authenticity,integrity,usability,and reliability of electronic records in cloud storage.Moreover,this paper proposes the technology framework of preservation for trusted electronic records.Also,the technology of blockchain,proofs of retrievability,the open archival information system model and erasure code are adopted to protect these four security attributes,to guarantee the credibility of the electronic record.展开更多
With the development of information technology,cloud computing technology has brought many conveniences to all aspects of work and life.With the continuous promotion,popularization and vigorous development of e-govern...With the development of information technology,cloud computing technology has brought many conveniences to all aspects of work and life.With the continuous promotion,popularization and vigorous development of e-government and e-commerce,the number of documents in electronic form is getting larger and larger.Electronic document is an indispensable main tool and real record of e-government and business activities.How to scientifically and effectively manage electronic documents?This is an important issue faced by governments and enterprises in improving management efficiency,protecting state secrets or business secrets,and reducing management costs.This paper discusses the application of cloud computing technology in the construction of electronic file management system,proposes an architecture of electronic file management system based on cloud computing,and makes a more detailed discussion on key technologies and implementation.The electronic file management system is built on the cloud architecture to enable users to upload,download,share,set security roles,audit,and retrieve files based on multiple modes.An electronic file management system based on cloud computing can make full use of cloud storage,cloud security,and cloud computing technologies to achieve unified,reliable,and secure management of electronic files.展开更多
With the rapid development of E-commerce and E-government,there are so many electronic records have been produced.The increasing number of electronic records brings about storage difficulties,the traditional electroni...With the rapid development of E-commerce and E-government,there are so many electronic records have been produced.The increasing number of electronic records brings about storage difficulties,the traditional electronic records center is difficult to cope with the current fast growth requirements of electronic records storage and management.Therefore,it is imperative to use cloud storage technology to build electronic record centers.However,electronic records also have weaknesses in the cloud storage environment,and one of them is that once electronic record owners or managers lose physical control of them,the electronic records are more likely to be tampered with and destroyed.So,the paper builds a reliable electronic records preservation system based on coding theory.It can effectively guarantee the reliability of record storage when the electronic record is damaged,and the original electronic record can be restored by redundant coding,thus ensuring the reliable storage of electronic records.展开更多
The electronic structures, chemical bonding and elastic properties of the Co2P-type structure phase ultra-incompressible Re2P (orthorhombic phase) were investigated by density-functional theory (DFT) within genera...The electronic structures, chemical bonding and elastic properties of the Co2P-type structure phase ultra-incompressible Re2P (orthorhombic phase) were investigated by density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the orthorhombic structure phase Re2P is metallic material. The density of state (DOS) and the partial density of state (PDOS) calculations show that the DOS near the Fermi level is mainly from the Re-5d state. Population analysis suggests that the chemical bonding in Re2P has predominantly covalent character with mixed covalent-ionic character. Basic physical properties, such as lattice constant, bulk modulus, shear modulus, and elastic constants Cij, were calculated. The elastic modulus and Poisson ratio were also predicted. The results show that the Co2P-type structure phase Re2P is mechanically stable and behaves in a brittle manner.展开更多
增强型氮化镓(GaN)基高电子迁移率晶体管(high electron mobility transistor,HEMT)是高频高功率器件与开关器件领域的研究热点,P-GaN栅技术因具备制备工艺简单、可控且工艺重复性好等优势而成为目前最常用且唯一实现商用的GaN基增强型...增强型氮化镓(GaN)基高电子迁移率晶体管(high electron mobility transistor,HEMT)是高频高功率器件与开关器件领域的研究热点,P-GaN栅技术因具备制备工艺简单、可控且工艺重复性好等优势而成为目前最常用且唯一实现商用的GaN基增强型器件制备方法。首先,概述了当前制约P-GaN栅结构GaN基HEMT器件发展的首要问题,从器件结构与器件制备工艺这2个角度,综述了其性能优化举措方面的最新研究进展。然后,通过对研究进展的分析,总结了当前研究工作面临的挑战以及解决方法。最后,对未来的发展前景、发展方向进行了展望。展开更多
Constructing step-scheme(S-scheme)heterojunctions can considerably facilitate separation and transfer of photocarriers,as well as promote strong redox ability.The interface resistance of heterojunctions immediately af...Constructing step-scheme(S-scheme)heterojunctions can considerably facilitate separation and transfer of photocarriers,as well as promote strong redox ability.The interface resistance of heterojunctions immediately affects photocarrier separation and determines the photocatalytic activity.Herein,we constructed a novel Bi OBr/Ni_(2)P/g-C_(3)N_(4) heterojunction using Ni_(2)P as a novel electron bridge to reduce the interfacial resistance of photocarriers between Bi OBr and g-C3N4.The as-prepared 10% BiOBr/Ni2P/g-C_(3)N_(4) sample exhibited outstanding visible-light photocatalytic performance for methyl orange and rhodamine B removal,with degradation efficiencies of 91.4% and 98.9%,respectively.The excellent photocatalytic activity of Bi OBr/Ni_(2)P/g-C_(3)N_(4) was mainly attributed to the synergistic effects of the Ni2P cocatalyst and S-scheme heterojunction,which not only reduced the interface resistance but also retained the strong redox potential of the photocarriers.In addition,the formation of the S-scheme system was supported by active oxygen species investigation,current-voltage curves,and density functional theory calculations.This work provides a guideline for the design of highly efficient S-scheme photocatalysts with transition metal phosphates as electron bridges to improve photocarriers separation.展开更多
The structures and electronic spectra of the derivatives of C60-P-2,4,6-triphenyl borazinc have been studied by using AM 1 method. The calculated results indicate that this kind of compounds has a lower energy differe...The structures and electronic spectra of the derivatives of C60-P-2,4,6-triphenyl borazinc have been studied by using AM 1 method. The calculated results indicate that this kind of compounds has a lower energy difference between HOMO and LUMO. It is found that the electron cloud on unoccupied frontier orbital mainly comes from the contribution of C60, while that on occupied frontier orbital mainly concentrates on the side chain. A long-lived charge-separated state may occur in the objective compounds.展开更多
The electronic structures and optical properties of B3 ZnO series of Zn4X4-yMy(X :O, S, Se or Te; M = N, Sb, C1 or I; y = 0 or 1) are studied by first-principles calculations using a pseudopotential plane-wave meth...The electronic structures and optical properties of B3 ZnO series of Zn4X4-yMy(X :O, S, Se or Te; M = N, Sb, C1 or I; y = 0 or 1) are studied by first-principles calculations using a pseudopotential plane-wave method. The results show that Zn d-X p orbital interactions play an important role in the p-type doping tendency in zinc-based Ⅱ-Ⅵ semiconductors. In ZnX, with increasing atomic number of X, Zn d-X p orbital interactions decrease and Zn s-X p orbital interactions increase. Additionally, substituting group-V elements for X will reduce the Zn d-X p orbital interactions while substituting group-VII elements for X will increase the Zn d-X p orbital interactions. The results also show that group-V-doped ZnX and group-Ⅷ-doped ZnX exhibit different optical behaviours due to their different orbital interaction effects.展开更多
The electronic structures and the optical properties of N-doped β-Ga2O3 with different N-doping concentrations are studied using the first-principles method.We find that the N substituting O(1) atom is the most sta...The electronic structures and the optical properties of N-doped β-Ga2O3 with different N-doping concentrations are studied using the first-principles method.We find that the N substituting O(1) atom is the most stable structure for the smallest formation energy.After N-doping,the charge density distribution significantly changes,and the acceptor impurity level is introduced above the valence band and intersects with the Fermi level.The impurity absorption edges appear to shift toward longer wavelengths with an increase in N-doping concentration.The complex refractive index shows metallic characteristics in the N-doped β-Ga2O3.展开更多
Cloud storage has the characteristics of distributed and virtual, and it makes the ownership rights and management rights of users data separated. The master-slave architecture of cloud storage has a problem of single...Cloud storage has the characteristics of distributed and virtual, and it makes the ownership rights and management rights of users data separated. The master-slave architecture of cloud storage has a problem of single point failure. In this paper, we provide a cloud storage architecture model based on Semantic equivalence. According to semantic matching degree, this architecture divides the nodes into node cluster by creating semantic tree and maintains system routing through semantic hypergraph. Through simulation experiments show that dividing network into semantic can enhance scalability and flexibility of the system, and it can improve the efficiency of network organization and the security of cloud storage system, at the same time, it can also reduce the cloud data storage and the delay of reading time.展开更多
2-(pyridine-2-yl)-N-p-chlorohydrazinecarbothioamide (HCPTS) was synthesized, characterized and successfully applied for the preconcentration of Cu(II), Ni(II), Zn(II), Cd(II), Co(II), Pb(II), Fe(II), and Hg(II) in wat...2-(pyridine-2-yl)-N-p-chlorohydrazinecarbothioamide (HCPTS) was synthesized, characterized and successfully applied for the preconcentration of Cu(II), Ni(II), Zn(II), Cd(II), Co(II), Pb(II), Fe(II), and Hg(II) in water, blood, and urine samples prior to graphite furnace atomic absorption determination (GFAAS);Hg was determined by cold vapor technique. Under the optimum experimental conditions (i.e. pH = 8, 10–4 M of HCPTS, 0.05% w/v of Triton X-114), calibration graphs were linear in the range of 0.02 to 200 ng?mL–1 for Co(II), Cd(II), Pb(II) and Ni(II);0.03 to 200 ng?mL–1 for Cu(II);0.07 to 200 ng?mL–1 for Fe(II) and Zn(II) and 0.02 to 150 ng?mL–1 for Hg(II). The enrichment factors were 43, 51, 41, 46, 54, 40, 45 and 52 for Cu(II), Ni(II),Zn (II), Cd(II), Co(II), Pb(II), Fe(II), and Hg(II), respectively. The limit of detection were found to be 0.019, 0.094, 0.0514, 0.052, 0.0165, 0.047, 0.068 and 0.041 ng?mL–1 for Cu(II), Ni(II), Zn(II), Cd(II), Co(II), Pb(II), Fe(II), and Hg(II), respectively. The developed method was applied to the determination of these metal ions in water, blood and urine samples with satisfactory results.展开更多
Black Arsenic-phosphorus(AsP)monolayer is a novel two-dimensional nanomaterial with the characteristics of modest direct bandgap and superhigh carrier mobility.However,little is known about how the surface adsorption ...Black Arsenic-phosphorus(AsP)monolayer is a novel two-dimensional nanomaterial with the characteristics of modest direct bandgap and superhigh carrier mobility.However,little is known about how the surface adsorption affects the property of AsP monolayer.Motivated by this,we researched systematically the geometry,adsorption energy,magnetic moment and electronic structure of 11 different adatoms adsorbed on AsP monolayer using firstprinciples calculations.The adatoms used in this study include light nonmetallic(C,N,O)adatoms,period-3 metal(Na,Mg,Al)adatoms,and transition-metal(Ti,V,Cr,Mn,and Fe)adatoms.The adatoms cause an abundant variety of structural,magnetic and electronic properties.This study shows that AsP binds strongly with all adatoms under study and the adsorption energies in all systems are much stronger than that on graphene,Si C,BN,or MoS2.The semiconductor property of AsP is affected by the introduction of adsorbed atoms,which can induce mid-gap states or cause n-type doping.Moreover,the adatom adsorptions cause various spintronic characteristics:N-,Ti-,and Fe-adsorbed AsP become bipolar semiconductors,while the Mn-decorated AsP becomes a bipolar spin-gapless semiconductor.Our results suggest that atomic adsorption on AsP monolayers has potential application in the field of nanoelectronics and spintronics.展开更多
文摘Since the position of the electron in a hydrogen atom cannot be determined, the region in which it resides is said to be determined stochastically and forms an electron cloud. The probability density function of the single electron in 1s orbit is expressed as φ2, a function of distance from the nucleus. However, the probability of existence of the electron is expressed as a radial distribution function at an arbitrary distance from the nucleus, so it is estimated as the probability of the entire spherical shape of that radius. In this study, it has been found that the electron existence probability approximates the radial distribution function by assuming that the probability of existence of the electron being in the vicinity of the nucleus follows a normal distribution for arbitrary x-, y-, and z-axis directions. This implies that the probability of existence of the electron, which has been known only from the distance information, would follow a normal distribution independently in the three directions. When the electrons’ motion is extremely restricted in a certain direction by the magnetic field of both tokamak and helical fusion reactors, the probability of existence of the electron increases with proximity to the nucleus, and as a result, it is less likely to be liberated from the nucleus. Therefore, more and more energy is required to free the nucleus from the electron in order to generate plasma.
文摘The wave equation of the electron, recently improved, allows physics to obtain all the quantum numbers and other results explaining the hydrogen spectrum. The Pauli exclusion principle then gives the description of electron clouds used in chemistry. The relativistic wave equation is associated with a Lagrangian density, thus also with an energy-momentum tensorial density. The wave of an electron cloud adds these energy-momentum densities, while photons in light are precisely those differences between such energy-momentum densities.
基金This work is supported by the NSFC(No.61772280,61772454,6171101570,61702236)Natural Science Foundation of Jiangsu Province under grant No.BK20150460,the Changzhou Sci&Tech Program(No.CJ20179027)the PAPD fund from NUIST.Prof.Hye-Jin Kim is the corresponding author.
文摘Cloud storage represents the trend of intensive,scale and specialization of information technology,which has changed the technical architecture and implementation method of electronic records management.Moreover,it will provide a convenient way to generate more advanced and efficient management of the electronic data records.However,in cloud storage environment,it is difficult to guarantee the trustworthiness of electronic records,which results in a series of severe challenges to electronic records management.Starting from the definition and specification of electronic records,this paper firstly analyzes the requirements of the trustworthiness in cloud storage during their long-term preservation according to the information security theory and subdivides the trustworthiness into the authenticity,integrity,usability,and reliability of electronic records in cloud storage.Moreover,this paper proposes the technology framework of preservation for trusted electronic records.Also,the technology of blockchain,proofs of retrievability,the open archival information system model and erasure code are adopted to protect these four security attributes,to guarantee the credibility of the electronic record.
基金research Grants from the National Social Science Foundation of China(Grant No.18FTQ005).The author of the grant is Shi Jin.The URL of the sponsor site is http://www.npopss-cn.gov.cn/.
文摘With the development of information technology,cloud computing technology has brought many conveniences to all aspects of work and life.With the continuous promotion,popularization and vigorous development of e-government and e-commerce,the number of documents in electronic form is getting larger and larger.Electronic document is an indispensable main tool and real record of e-government and business activities.How to scientifically and effectively manage electronic documents?This is an important issue faced by governments and enterprises in improving management efficiency,protecting state secrets or business secrets,and reducing management costs.This paper discusses the application of cloud computing technology in the construction of electronic file management system,proposes an architecture of electronic file management system based on cloud computing,and makes a more detailed discussion on key technologies and implementation.The electronic file management system is built on the cloud architecture to enable users to upload,download,share,set security roles,audit,and retrieve files based on multiple modes.An electronic file management system based on cloud computing can make full use of cloud storage,cloud security,and cloud computing technologies to achieve unified,reliable,and secure management of electronic files.
文摘With the rapid development of E-commerce and E-government,there are so many electronic records have been produced.The increasing number of electronic records brings about storage difficulties,the traditional electronic records center is difficult to cope with the current fast growth requirements of electronic records storage and management.Therefore,it is imperative to use cloud storage technology to build electronic record centers.However,electronic records also have weaknesses in the cloud storage environment,and one of them is that once electronic record owners or managers lose physical control of them,the electronic records are more likely to be tampered with and destroyed.So,the paper builds a reliable electronic records preservation system based on coding theory.It can effectively guarantee the reliability of record storage when the electronic record is damaged,and the original electronic record can be restored by redundant coding,thus ensuring the reliable storage of electronic records.
基金Project(11271121)supported by the National Natural Science Foundation of ChinaProject(11JJ2002)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(11K038)supported by Key Laboratory of High Performance Computing and Stochastic Information Processing of Hunan Province,ChinaProject(2013GK3130)supported by the Scientific and Technological Plan Project of Hunan Province,China
文摘The electronic structures, chemical bonding and elastic properties of the Co2P-type structure phase ultra-incompressible Re2P (orthorhombic phase) were investigated by density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the orthorhombic structure phase Re2P is metallic material. The density of state (DOS) and the partial density of state (PDOS) calculations show that the DOS near the Fermi level is mainly from the Re-5d state. Population analysis suggests that the chemical bonding in Re2P has predominantly covalent character with mixed covalent-ionic character. Basic physical properties, such as lattice constant, bulk modulus, shear modulus, and elastic constants Cij, were calculated. The elastic modulus and Poisson ratio were also predicted. The results show that the Co2P-type structure phase Re2P is mechanically stable and behaves in a brittle manner.
文摘增强型氮化镓(GaN)基高电子迁移率晶体管(high electron mobility transistor,HEMT)是高频高功率器件与开关器件领域的研究热点,P-GaN栅技术因具备制备工艺简单、可控且工艺重复性好等优势而成为目前最常用且唯一实现商用的GaN基增强型器件制备方法。首先,概述了当前制约P-GaN栅结构GaN基HEMT器件发展的首要问题,从器件结构与器件制备工艺这2个角度,综述了其性能优化举措方面的最新研究进展。然后,通过对研究进展的分析,总结了当前研究工作面临的挑战以及解决方法。最后,对未来的发展前景、发展方向进行了展望。
文摘Constructing step-scheme(S-scheme)heterojunctions can considerably facilitate separation and transfer of photocarriers,as well as promote strong redox ability.The interface resistance of heterojunctions immediately affects photocarrier separation and determines the photocatalytic activity.Herein,we constructed a novel Bi OBr/Ni_(2)P/g-C_(3)N_(4) heterojunction using Ni_(2)P as a novel electron bridge to reduce the interfacial resistance of photocarriers between Bi OBr and g-C3N4.The as-prepared 10% BiOBr/Ni2P/g-C_(3)N_(4) sample exhibited outstanding visible-light photocatalytic performance for methyl orange and rhodamine B removal,with degradation efficiencies of 91.4% and 98.9%,respectively.The excellent photocatalytic activity of Bi OBr/Ni_(2)P/g-C_(3)N_(4) was mainly attributed to the synergistic effects of the Ni2P cocatalyst and S-scheme heterojunction,which not only reduced the interface resistance but also retained the strong redox potential of the photocarriers.In addition,the formation of the S-scheme system was supported by active oxygen species investigation,current-voltage curves,and density functional theory calculations.This work provides a guideline for the design of highly efficient S-scheme photocatalysts with transition metal phosphates as electron bridges to improve photocarriers separation.
文摘The structures and electronic spectra of the derivatives of C60-P-2,4,6-triphenyl borazinc have been studied by using AM 1 method. The calculated results indicate that this kind of compounds has a lower energy difference between HOMO and LUMO. It is found that the electron cloud on unoccupied frontier orbital mainly comes from the contribution of C60, while that on occupied frontier orbital mainly concentrates on the side chain. A long-lived charge-separated state may occur in the objective compounds.
基金Project supported by the National Natural Science Foundation of China (Grant No 10625416).
文摘The electronic structures and optical properties of B3 ZnO series of Zn4X4-yMy(X :O, S, Se or Te; M = N, Sb, C1 or I; y = 0 or 1) are studied by first-principles calculations using a pseudopotential plane-wave method. The results show that Zn d-X p orbital interactions play an important role in the p-type doping tendency in zinc-based Ⅱ-Ⅵ semiconductors. In ZnX, with increasing atomic number of X, Zn d-X p orbital interactions decrease and Zn s-X p orbital interactions increase. Additionally, substituting group-V elements for X will reduce the Zn d-X p orbital interactions while substituting group-VII elements for X will increase the Zn d-X p orbital interactions. The results also show that group-V-doped ZnX and group-Ⅷ-doped ZnX exhibit different optical behaviours due to their different orbital interaction effects.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10974077)the Natural Science Foundation of Shandong Province,China (Grant No. 2009ZRB01702)the Shandong Provincial Higher Educational Science and Technology Program,China (Grant No. J10LA08)
文摘The electronic structures and the optical properties of N-doped β-Ga2O3 with different N-doping concentrations are studied using the first-principles method.We find that the N substituting O(1) atom is the most stable structure for the smallest formation energy.After N-doping,the charge density distribution significantly changes,and the acceptor impurity level is introduced above the valence band and intersects with the Fermi level.The impurity absorption edges appear to shift toward longer wavelengths with an increase in N-doping concentration.The complex refractive index shows metallic characteristics in the N-doped β-Ga2O3.
基金supported in part by the National Science and technology support program of China No. 2014BAH29F05the National High-Tech R&D Program (863 Program) No. 2015AA01A705+3 种基金the National Natural Science Foundation of China under Grant No. 61572072the National Science and Technology Major Project No. 2015ZX03001041the Fundamental Research Funds for the Central Universities No. FRF-TP-14-046A2"Research on the System of Personalized Education using Big Data"
文摘Cloud storage has the characteristics of distributed and virtual, and it makes the ownership rights and management rights of users data separated. The master-slave architecture of cloud storage has a problem of single point failure. In this paper, we provide a cloud storage architecture model based on Semantic equivalence. According to semantic matching degree, this architecture divides the nodes into node cluster by creating semantic tree and maintains system routing through semantic hypergraph. Through simulation experiments show that dividing network into semantic can enhance scalability and flexibility of the system, and it can improve the efficiency of network organization and the security of cloud storage system, at the same time, it can also reduce the cloud data storage and the delay of reading time.
文摘2-(pyridine-2-yl)-N-p-chlorohydrazinecarbothioamide (HCPTS) was synthesized, characterized and successfully applied for the preconcentration of Cu(II), Ni(II), Zn(II), Cd(II), Co(II), Pb(II), Fe(II), and Hg(II) in water, blood, and urine samples prior to graphite furnace atomic absorption determination (GFAAS);Hg was determined by cold vapor technique. Under the optimum experimental conditions (i.e. pH = 8, 10–4 M of HCPTS, 0.05% w/v of Triton X-114), calibration graphs were linear in the range of 0.02 to 200 ng?mL–1 for Co(II), Cd(II), Pb(II) and Ni(II);0.03 to 200 ng?mL–1 for Cu(II);0.07 to 200 ng?mL–1 for Fe(II) and Zn(II) and 0.02 to 150 ng?mL–1 for Hg(II). The enrichment factors were 43, 51, 41, 46, 54, 40, 45 and 52 for Cu(II), Ni(II),Zn (II), Cd(II), Co(II), Pb(II), Fe(II), and Hg(II), respectively. The limit of detection were found to be 0.019, 0.094, 0.0514, 0.052, 0.0165, 0.047, 0.068 and 0.041 ng?mL–1 for Cu(II), Ni(II), Zn(II), Cd(II), Co(II), Pb(II), Fe(II), and Hg(II), respectively. The developed method was applied to the determination of these metal ions in water, blood and urine samples with satisfactory results.
基金supported by the National Natural Science Foundation of China(No.11404268 and No.11774294)the Sichuan Province Applied Science and Technology Project(No.2017JY0056)the R&D Program for International ST Cooperation and Exchanges of Sichuan province(No.2018HH0088)。
文摘Black Arsenic-phosphorus(AsP)monolayer is a novel two-dimensional nanomaterial with the characteristics of modest direct bandgap and superhigh carrier mobility.However,little is known about how the surface adsorption affects the property of AsP monolayer.Motivated by this,we researched systematically the geometry,adsorption energy,magnetic moment and electronic structure of 11 different adatoms adsorbed on AsP monolayer using firstprinciples calculations.The adatoms used in this study include light nonmetallic(C,N,O)adatoms,period-3 metal(Na,Mg,Al)adatoms,and transition-metal(Ti,V,Cr,Mn,and Fe)adatoms.The adatoms cause an abundant variety of structural,magnetic and electronic properties.This study shows that AsP binds strongly with all adatoms under study and the adsorption energies in all systems are much stronger than that on graphene,Si C,BN,or MoS2.The semiconductor property of AsP is affected by the introduction of adsorbed atoms,which can induce mid-gap states or cause n-type doping.Moreover,the adatom adsorptions cause various spintronic characteristics:N-,Ti-,and Fe-adsorbed AsP become bipolar semiconductors,while the Mn-decorated AsP becomes a bipolar spin-gapless semiconductor.Our results suggest that atomic adsorption on AsP monolayers has potential application in the field of nanoelectronics and spintronics.