Photonic bound states in the continuum(BICs)are spatially localized modes with infinitely long lifetimes,which exist within a radiation continuum at discrete energy levels.These states have been explored in various sy...Photonic bound states in the continuum(BICs)are spatially localized modes with infinitely long lifetimes,which exist within a radiation continuum at discrete energy levels.These states have been explored in various systems,including photonic and phononic crystal slabs,metasurfaces,waveguides,and integrated circuits.Robustness and availability of the BICs are important aspects for fully taming the BICs toward practical applications.Here,we propose a generic mechanism to realize BICs that exist by first principles free of fine parameter tuning based on non-Maxwellian double-net metamaterials(DNMs).An ideal warm hydrodynamic double plasma(HDP)fluid model provides a homogenized description of DNMs and explains the robustness of the BICs found herein.In the HDP model,these are standing wave formations made of electron acoustic waves(EAWs),which are pure charge oscillations with vanishing electromagnetic fields.EAW BICs have various advantages,such as(i)frequency-comb-like collection of BICs free from normal resonances;(ii)robustness to symmetry-breaking perturbations and formation of quasi-BICs with an ultrahigh Q-factor even if subject to disorder;and(iii)giving rise to subwavelength microcavity resonators hosting quasi-BIC modes with an ultrahigh Q-factor.展开更多
In this paper, (2+1)-dimensional electron acoustic waves (EAW) in an unmagnetized collisionless plasma have been studied by the linearized method and the reductive perturbation technique, respectively. The disper...In this paper, (2+1)-dimensional electron acoustic waves (EAW) in an unmagnetized collisionless plasma have been studied by the linearized method and the reductive perturbation technique, respectively. The dispersion relation and a modified Kadomtsev-Petviashvili (KP) equation have been obtained for the EAW in the plasma considering a cold electron fluid and a vortex-like hot electrons. It is found from some numerical results that the parameter β(the ratio of the free hot electron temperature to the hot trapped electron temperature) effects on the amplitude and the Width of the electron acoustic solitary waves (EASW). It can be indicated that the free hot electron temperature and the hot trapped electron temperature have very important effect on the characters of the propagation for the EASW.展开更多
Nonlinear features of electron-acoustic shock waves are studied. The Burgers equation is derived and converted to the time fractional Burgers equation by Agrawal's method. Using the Adomian decomposition method, the ...Nonlinear features of electron-acoustic shock waves are studied. The Burgers equation is derived and converted to the time fractional Burgers equation by Agrawal's method. Using the Adomian decomposition method, the shock wave solutions of the time fractional Burgers equation are constructed. The effect of time fractional parameter on the shock wave properties in auroral plasma & investigated.展开更多
The formation and propagation of nonlinear dust acoustic waves(DAWs) as solitary and solitary/shock waves in an unmagnetized, homogeneous, dissipative and collisionless dusty plasma comprising negatively charged mic...The formation and propagation of nonlinear dust acoustic waves(DAWs) as solitary and solitary/shock waves in an unmagnetized, homogeneous, dissipative and collisionless dusty plasma comprising negatively charged micron sized dust grains in the presence of free and trapped electrons with singly charged non-thermal positive ions is discussed in detail. The evolution characteristics of the solitary and shock waves are studied by deriving a modified Korteweg–de Vries–Burgers(mKdV–Burgers) equation using the reductive perturbation method. The mKdV–Burgers equation is solved considering the presence(absence) of dissipation. In the absence of dissipation the system admits a solitary wave solution, whereas in the presence of dissipation the system admits shock waves(both monotonic and oscillatory) as well as a combination of solitary and shock wave solutions. Standard methods of solving the evolution equation of shock(solitary) waves are used. The results are discussed numerically using standard values of plasma parameters. The findings may be useful for better understanding of formation and propagation of waves in astrophysical plasma.展开更多
As electron temperature T<sub>e</sub> is much higher than ion temperature T<sub>i</sub>, and electron driftspeed V<sub>d</sub> is larger than the critical value V<sub>dc</s...As electron temperature T<sub>e</sub> is much higher than ion temperature T<sub>i</sub>, and electron driftspeed V<sub>d</sub> is larger than the critical value V<sub>dc</sub> of V<sub>d</sub>, the ω=KV<sub>φ</sub> mode ion acoustic wave(IAW) will be instable. Under a long wave condition (Kλ<sub>D</sub>【【1, where λ<sub>D</sub> is Deby length,K is weve number), the growing rate γ(K) of the IAW may be written展开更多
The dust acoustic(DA) shock wave with dust charge fluctuations, non-Maxwellian ions, and non-isothermal electrons is studied theoretically. The perturbation technique is employed to derive the lower order three-dime...The dust acoustic(DA) shock wave with dust charge fluctuations, non-Maxwellian ions, and non-isothermal electrons is studied theoretically. The perturbation technique is employed to derive the lower order three-dimensional(3D) Burgers equation, and shock wave solution is explored by the tan-hyperbolic method. The effects of flat trapped and trapped electron distributions in the presence of Maxwellian and non-Maxwellian ions on characteristics shock waves are observed. The temperature ratio of non-Maxwellian ion temperature and non-isothermal electron temperature is found to play an important role in forming the shock-like structure.展开更多
基金funding from the Swiss National Science Foundation (Grant No. 188647)from the Adolphe Merkle Foundation
文摘Photonic bound states in the continuum(BICs)are spatially localized modes with infinitely long lifetimes,which exist within a radiation continuum at discrete energy levels.These states have been explored in various systems,including photonic and phononic crystal slabs,metasurfaces,waveguides,and integrated circuits.Robustness and availability of the BICs are important aspects for fully taming the BICs toward practical applications.Here,we propose a generic mechanism to realize BICs that exist by first principles free of fine parameter tuning based on non-Maxwellian double-net metamaterials(DNMs).An ideal warm hydrodynamic double plasma(HDP)fluid model provides a homogenized description of DNMs and explains the robustness of the BICs found herein.In the HDP model,these are standing wave formations made of electron acoustic waves(EAWs),which are pure charge oscillations with vanishing electromagnetic fields.EAW BICs have various advantages,such as(i)frequency-comb-like collection of BICs free from normal resonances;(ii)robustness to symmetry-breaking perturbations and formation of quasi-BICs with an ultrahigh Q-factor even if subject to disorder;and(iii)giving rise to subwavelength microcavity resonators hosting quasi-BIC modes with an ultrahigh Q-factor.
基金The project supported by National Natural Science Foundation of China under Grant No. 10575082
文摘In this paper, (2+1)-dimensional electron acoustic waves (EAW) in an unmagnetized collisionless plasma have been studied by the linearized method and the reductive perturbation technique, respectively. The dispersion relation and a modified Kadomtsev-Petviashvili (KP) equation have been obtained for the EAW in the plasma considering a cold electron fluid and a vortex-like hot electrons. It is found from some numerical results that the parameter β(the ratio of the free hot electron temperature to the hot trapped electron temperature) effects on the amplitude and the Width of the electron acoustic solitary waves (EASW). It can be indicated that the free hot electron temperature and the hot trapped electron temperature have very important effect on the characters of the propagation for the EASW.
基金Supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under Grant No 2016/01/6239
文摘Nonlinear features of electron-acoustic shock waves are studied. The Burgers equation is derived and converted to the time fractional Burgers equation by Agrawal's method. Using the Adomian decomposition method, the shock wave solutions of the time fractional Burgers equation are constructed. The effect of time fractional parameter on the shock wave properties in auroral plasma & investigated.
文摘The formation and propagation of nonlinear dust acoustic waves(DAWs) as solitary and solitary/shock waves in an unmagnetized, homogeneous, dissipative and collisionless dusty plasma comprising negatively charged micron sized dust grains in the presence of free and trapped electrons with singly charged non-thermal positive ions is discussed in detail. The evolution characteristics of the solitary and shock waves are studied by deriving a modified Korteweg–de Vries–Burgers(mKdV–Burgers) equation using the reductive perturbation method. The mKdV–Burgers equation is solved considering the presence(absence) of dissipation. In the absence of dissipation the system admits a solitary wave solution, whereas in the presence of dissipation the system admits shock waves(both monotonic and oscillatory) as well as a combination of solitary and shock wave solutions. Standard methods of solving the evolution equation of shock(solitary) waves are used. The results are discussed numerically using standard values of plasma parameters. The findings may be useful for better understanding of formation and propagation of waves in astrophysical plasma.
文摘As electron temperature T<sub>e</sub> is much higher than ion temperature T<sub>i</sub>, and electron driftspeed V<sub>d</sub> is larger than the critical value V<sub>dc</sub> of V<sub>d</sub>, the ω=KV<sub>φ</sub> mode ion acoustic wave(IAW) will be instable. Under a long wave condition (Kλ<sub>D</sub>【【1, where λ<sub>D</sub> is Deby length,K is weve number), the growing rate γ(K) of the IAW may be written
文摘The dust acoustic(DA) shock wave with dust charge fluctuations, non-Maxwellian ions, and non-isothermal electrons is studied theoretically. The perturbation technique is employed to derive the lower order three-dimensional(3D) Burgers equation, and shock wave solution is explored by the tan-hyperbolic method. The effects of flat trapped and trapped electron distributions in the presence of Maxwellian and non-Maxwellian ions on characteristics shock waves are observed. The temperature ratio of non-Maxwellian ion temperature and non-isothermal electron temperature is found to play an important role in forming the shock-like structure.