期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
Crystallographic Characteristic of Intermetallic Compounds in Al-Si-Mg Casting Alloys Using Electron Backscatter Diffraction 被引量:2
1
作者 ZOU Yongzhi XU Zhengbing +1 位作者 HE Juan ZENG Jianmin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第3期305-311,共7页
The Al-Si-Mg alloy which can be strengthened by heat treatment is widely applied to the key components of aerospace and aeronautics. Iron-rich intermetallic compounds are well known to be strongly influential on mecha... The Al-Si-Mg alloy which can be strengthened by heat treatment is widely applied to the key components of aerospace and aeronautics. Iron-rich intermetallic compounds are well known to be strongly influential on mechanical properties in Al-Si-Mg alloys. But intermetallic compounds in cast Al-Si-Mg alloy intermetallics are often misidentified in previous metallurgical studies. It was described as many different compounds, such as AlFeSi, Al8Fe2Si, Al5(Fe, Mn)3Si2 and so on. For the purpose of solving this problem, the intermetallic compounds in cast Al-Si alloys containing 0.5% Mg were investigated in this study. The iron-rich compounds in Al-Si-Mg casting alloys were characterized by optical microscope(OM), scanning electron microscope(SEM), energy dispersive X-ray spectrometer(EDS), electron backscatter diffraction(EBSD) and X-ray powder diffraction(XRD). The electron backscatter diffraction patterns were used to assess the crystallographic characteristics of intermetallic compounds. The compound which contains Fe/Mg-rich particles with coarse morphologies was Al8FeMg3Si6 in the alloy by using EBSD. The compound belongs to hexagonal system, space group P6_2m, with the lattice parameter a=0.662 nm, c=0.792 nm. The β-phase is indexed as tetragonal Al3FeSi2, space group I4/mcm, a=0.607 nm and c=0.950 nm. The XRD data indicate that Al8FeMg3Si6 and Al3FeSi2 are present in the microstructure of Al-7Si-Mg alloy, which confirms the identification result of EBSD. The present study identified the iron-rich compound in Al-Si-Mg alloy, which provides a reliable method to identify the intermetallic compounds in short time in Al-Si-Mg alloy. Study results are helpful for identification of complex compounds in alloys. 展开更多
关键词 Al-Si-Mg alloys intermetallic compound electron backscatter diffraction(EBSD) X-ray powder diffraction(XRD)
下载PDF
An Algorithm to Analyze Electron Backscatter Diffraction Data for Grain Reconstruction:from Methodology to Application
2
作者 Xue-Hao Zheng Hong-Wang Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第5期491-499,共9页
An algorithm for grain reconstruction based on electron backscatter diffraction data was proposed in this paper. This algorithm can well record the original data arrangement when an external file for the reconstructed... An algorithm for grain reconstruction based on electron backscatter diffraction data was proposed in this paper. This algorithm can well record the original data arrangement when an external file for the reconstructed grain(s) was exported for further post-processing. Assisted by an in-house MATLAB program, grain reconstruction, lattice rotations, orientation spreads, and slip system analysis can be performed. The validity of this algorithm has been successfully tested by polycrystalline Ni before and after channel die compression. 展开更多
关键词 Grain reconstruction ALGORITHM electron backscatter diffraction DEFORMATION Nickle
原文传递
Analysis of Orange Peel Defect in St14 Steel Sheet by Electron Backscattered Diffraction (EBSD) 被引量:7
3
作者 ShengquanCAO JinxuZHANG +1 位作者 JianshengWU JiaguangCHEN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第1期17-20,共4页
In this paper, the orange peel defect in the surface range of the st14 steel sheet has been investigated using the electron backscattered diffraction (EBSD) technique. It has been found that the orange peel defect in ... In this paper, the orange peel defect in the surface range of the st14 steel sheet has been investigated using the electron backscattered diffraction (EBSD) technique. It has been found that the orange peel defect in the st14 steel sheet was resulted from the local coarse grains which were produced during hot-rolling due to the critical deformation in dual-phase zone. During deep drawing, the coarse grains with {100}<001> microtexture can slip on the {112}<111> slip system to form bulging and yields orange peel defects, while the coarse grains with {112}<110> orientation do not form the defect as the Schmid factor of {112}<111> slip system in it equals zero. 展开更多
关键词 electron backscattered diffraction (EBSD) Orange peel defect Stl4 steel MICROTEXTURE
下载PDF
Residual stress measurement and analysis of siliceous slate-containing quartz veins
4
作者 Tao Wang Weiwei Ye +2 位作者 Yemeng Tong Naisheng Jiang Liyuan Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2310-2320,共11页
Engineering geological disasters such as rockburst have always been a critical factor affecting the safety of coal mine production.Thus,residual stress is considered a feasible method to explain these geomechanical ph... Engineering geological disasters such as rockburst have always been a critical factor affecting the safety of coal mine production.Thus,residual stress is considered a feasible method to explain these geomechanical phenomena.In this study,electron backscatter diffraction(EBSD)and optical microscopy were used to characterize the rock microcosm.A measuring area that met the requirements of X-ray diffraction(XRD)residual stress measurement was determined to account for the mechanism of rock residual stress.Then,the residual stress of a siliceous slate-containing quartz vein was measured and calculated using the sin^(2) ϕ method equipped with an X-ray diffractometer.Analysis of microscopic test results showed homogeneous areas with small particles within the millimeter range,meeting the requirements of XRD stress measurement statistics.Quartz was determined as the calibration mineral for slate samples containing quartz veins.The diffraction patterns of the(324)crystal plane were obtained under different ϕ and φ.The deviation direction of the diffraction peaks was consistent,indicating that the sample tested had residual stress.In addition,the principal residual stress within the quartz vein measured by XRD was compressive,ranging from 10 to 33 MPa.The maximum principal stress was parallel to the vein trend,whereas the minimum principal stress was perpendicular to the vein trend.Furthermore,the content of the low-angle boundary and twin boundary in the quartz veins was relatively high,which enhances the resistance of the rock mass to deformation and promotes the easy formation of strain concentrations,thereby resulting in residual stress.The proposed method for measuring residual stress can serve as a reference for subsequent observation and related research on residual stress in different types of rocks. 展开更多
关键词 residual stress siliceous sand rock microstructure X-ray diffraction electron backscatter diffraction
下载PDF
Crystallographic analysis of lath martensite in a 13Cr-5Ni steel by electron backscattering diffraction
5
作者 Wen-bo Liu Peng-cheng Song +3 位作者 Chi Zhang Di Yun Chun-fa Yao Zhi-gang Yang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2018年第2期213-220,共8页
Morphology observation and crystallographic analysis of lath martensite in 13Cr-5Ni steel were investigated by electron backscattering diffraction (EBSD) in a scanning electron microscope. The pole figures of the mi... Morphology observation and crystallographic analysis of lath martensite in 13Cr-5Ni steel were investigated by electron backscattering diffraction (EBSD) in a scanning electron microscope. The pole figures of the microstructure measured by EBSD showed that the martensite in this steel held the Kurdjumov-Sachs (K-S) orientation relationship, and the boundary misorientations after the austenite-martensite transformation were also analyzed. However, not all the 24 possible variants in the K-S relationship were observed in a single prior austenite grain. Sub-blocks with special combinations were observed, which can be explained by the minimization of the total shape strain between the adjacent variants introduced during the martensite transformation and relatively low carbon content in the 13Cr-5Ni steel. 展开更多
关键词 electron backscattering diffraction Martensite transformation Boundary misorientation Orientationrelationship
原文传递
Modeling uniaxial tensile deformation of polycrystalline Al using CPFEM 被引量:4
6
作者 Huachun pi Jingtao Han +2 位作者 Chuanguo Zhang A. Kiet Tieu Zhengyi Jiang 《Journal of University of Science and Technology Beijing》 CSCD 2008年第1期43-47,共5页
The crystal plasticity finite element modeling (CPFEM) is realized in commercial finite element code ABAQUS with UMAT subroutine on the basis of the crystal plasticity theory of rate dependent polycrystal constituti... The crystal plasticity finite element modeling (CPFEM) is realized in commercial finite element code ABAQUS with UMAT subroutine on the basis of the crystal plasticity theory of rate dependent polycrystal constitutive relations in the mesoscopic scale. The initial orientations obtained by electron backscatter diffraction (EBSD) are directly input into the CPFEM to simulate the mechanical response of polycrystalline 1050 pure Al in uniaxial tensile deformation. Two polycrystal models and two tensile strain rates were used in the simulations. The stress-strain curves of tensile deformation were analyzed. The predictions and the corresponding experiment result show reasonable agreement and slight deviation with experiments. The flow true stress of strain rate 0.01 s^-1 is higher than that of strain rate 0.001 s^-1. At the strain less than 0.05, the stress saturated rate of the experiment is higher than the simulated results. However, the stress saturated rate of the experiment becomes gentler than the corresponding simulated predictions at the strain over 0.05. Also, necking was simulated by the two models, but the necking strain is not well predicted. Tensile textures at strain 0.25 were predicted at the low strain rate of 0.001 s^-1. The predictions are in good accord with the experimental results. 2008 University of Science and Technology Beijing. All rights reserved. 展开更多
关键词 crystal plasticity f'mite element method electron backscatter diffraction (EBSD) uniaxial tensile deformation
下载PDF
Microstructure analyses and phase-field simulation of partially divorced eutectic solidification in hypoeutectic Mg-Al Alloys 被引量:2
7
作者 Joo-Hee Kang Jiwon Park +3 位作者 Kyung Song Chang-Seok Oh Oleg Shchyglo Ingo Steinbach 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第6期1672-1679,共8页
In this study the partially divorced eutectic microstructure ofα-Mg andβ-Mg17Al12was investigated by electron backscatter diffraction,transmission electron microscopy,and phase-field modeling in hypoeutectic Mg-Al a... In this study the partially divorced eutectic microstructure ofα-Mg andβ-Mg17Al12was investigated by electron backscatter diffraction,transmission electron microscopy,and phase-field modeling in hypoeutectic Mg-Al alloys.The orientation relationships between the individual eutecticαgrains,eutecticβphase,and primaryαgrains were investigated.While the amount of eutectic morphology is primarily determined by the Al content,the in-depth microstructure analyses and the phase-field simulation suggest non-interactive nucleation and growth of eutecticαphase in theβphase grown on the interdendritic primaryαdendrites.Also,phase-field simulations showed a preferred nucleation sequence where theβphase nucleates first and subsequently triggers the nucleation of eutecticαphase at the movingβphase solidification front,which supports the microstructural analysis results. 展开更多
关键词 Mg-Al alloy Partially divorced eutectic SOLIDIFICATION electron backscatter diffraction Phase-Field modeling
下载PDF
Ultrasonic vibration assisted tungsten inert gas welding of dissimilar metals 316L and L415 被引量:1
8
作者 Hong-xia Lan Xiu-fang Gong +3 位作者 Sen-feng Zhang Liang Wang Bin Wang Li-ping Nie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第7期943-953,共11页
Ultrasonic vibration assisted tungsten inert gas welding was applied to joining stainless steel 316 L and low alloy high strength steel L415.The effect of ultrasonic vibration on the microstructure and mechanical prop... Ultrasonic vibration assisted tungsten inert gas welding was applied to joining stainless steel 316 L and low alloy high strength steel L415.The effect of ultrasonic vibration on the microstructure and mechanical properties of a dissimilar metal welded joint of 316 L and L415 was systematically investigated.The microstructures of both heat affected zones of L415 and weld metal were substantially refined,and the clusters ofδferrite in traditional tungsten inert gas(TIG)weld were changed to a dispersive distribution via the ultrasonic vibration.The ultrasonic vibration promoted the uniform distribution of elements and decreased the micro-segregation tendency in the weld.With the application of ultrasonic vibration,the average tensile strength and elongation of the joint was improved from 613 to 650 MPa and from 16.15%to31.54%,respectively.The content ofΣ3 grain boundaries around the fusion line zone is higher and the distribution is more uniform in the ultrasonic vibration assisted welded joint compared with the traditional one,indicating an excellent weld metal crack resistance. 展开更多
关键词 ultrasonic vibration dissimilar metal welding MICROSTRUCTURE mechanical properties MICRO-SEGREGATION electron backscatter diffraction
下载PDF
Microstructure and microtexture evolution of aluminum alloy 3003 under ultrasonic welding process for embedding SiC fibre 被引量:1
9
作者 朱政强 E.Ghassemieh 《China Welding》 EI CAS 2009年第4期6-9,共4页
Ultrasonic welding process can be used for bonding metal foils which is the fundament of ultrasonic consolidation (UC). UC process can be used to embed reinforcement fibres such as SiC fibres within an aluminum matr... Ultrasonic welding process can be used for bonding metal foils which is the fundament of ultrasonic consolidation (UC). UC process can be used to embed reinforcement fibres such as SiC fibres within an aluminum matrix materials. In this research we are investigating the phenomena occurring in the microstructure of the parts during ultrasonic welding process to obtain better understanding about how and why the process works. High-resolution electron backscatter diffraction ( EBSD ) is used to study the effects of the vibration on the evolution of microstructure in AA3003. The inverse pole figures (IPF) and the correlated misorientation angle distribution of the mentioned samples are obtained. The characteristics of the crystallographic orientation, the grain structure and the grain boundary are analyzed to find the effect of ultrasonic vibration on the microstructure and microtexture of the bond. The ultrasonic vibration will lead to exceptional refinement of grains to a micron level along the bond area and affect the crystallographic orientation. Ultrasonic vibration results in a very weak texture. Plastic flow occurs in the grain after welding process and there is additional plastic flow around the fibre which leads to the fibre embedding. 展开更多
关键词 electron backscatter diffraction ultrasonic metal welding AA3003
下载PDF
Microstructural Characterization of the Shear Bands in Fe-Cr-Ni Single Crystal by EBSD
10
作者 Huajie YANG J.H.Zhang +1 位作者 Yongbo XU Marc Andre' Meyers 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第6期819-828,共10页
An investigation has been made into the microstructural characterization of the shear bands generated under high-strain rate (≈10^4 s^-1) deformation in Fe-15%Cr-15%Ni single crystal by EBSD-SEM (electron backscat... An investigation has been made into the microstructural characterization of the shear bands generated under high-strain rate (≈10^4 s^-1) deformation in Fe-15%Cr-15%Ni single crystal by EBSD-SEM (electron backscatter diffraction-scanning electron microscopy), TEM (transmission electron in microscopy) and HREM (high- resolution electron microscopy). The results reveal that the propagation of the shear band exhibits an asymmetrical behavior arising from inhomogenous distribution in plasticity in the bands because of different resistance to the collapse in different crystallographic directions; The γ-ε-α′phase transformations may take place inside and outside the bands, and these martensitic phases currently nucleate at intersections either between the twins and deformation bands or between the twins and ε-sheet. Investigation by EBSD shows that recrystallization can occur in the bands with a grain size of an average of 0.2μm in diameter. These nano-grains are proposed to attribute to the results of either dynamic or static recrystallization, which can be described by the rotational recrystallization mechanism. Calculation and analysis indicate that the strain rate inside the shear band can reach 2.50×10^6 s^-1, which is higher, by two or three orders of magnitude, than that exerted dynamically on the specimen tested. 展开更多
关键词 High-strain rate deformation Adiabatic shear band electron backscatter diffraction (EBSD) RECRYSTALLIZATION Fe-Cr-Ni single crystal
下载PDF
Effect of microstructure on outer surface roughening of magnesium alloy tubes in die-less mandrel drawing
11
作者 Takuma Kishimoto Peihua Du Tsuyoshi Furushima 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第10期2730-2744,共15页
The crystal orientation and outer surface roughening of magnesium alloy tubes were evaluated to clarify the effect of the mandrel on the microstructure and outer surface roughness in die-less mandrel drawing. Locally ... The crystal orientation and outer surface roughening of magnesium alloy tubes were evaluated to clarify the effect of the mandrel on the microstructure and outer surface roughness in die-less mandrel drawing. Locally heated ZM21 tubes with an outer diameter of 6.0 mm and an inner diameter of 3.8 mm were drawn with and without a mandrel. The outer surface roughness and crystal orientation were evaluated in the same measurement area. The results indicated that the outer surface becomes rougher in the die-less mandrel drawing than in die-less drawing for a given outer circumferential strain. The outer surface roughness developed when there was large difference in the pyramidal slip system Schmid factor. Therefore, the slip deformation of the pyramidal slip system seems to be mainly responsible for the outer surface roughening in the die-less mandrel drawing. Furthermore, the crystal grain with the {2110} crystal plane vertical to the normal direction of outer surface had a larger Schmid factor than the other crystal grains. The large number of crystal grains with the {2110} crystal plane in the die-less mandrel drawing is one of the reasons that the outer surface roughness develops more in the die-less mandrel drawing than in die-less drawing for a given outer circumferential strain. These results will contribute significantly to the development of fabrication process of the microtube with high surface quality, which prevents rapid corrosion of biomedical applications. 展开更多
关键词 Tube forming Die-less drawing Surface roughness Crystal plasticity Magnesium alloy electron backscatter diffraction
下载PDF
Extraction of Wind Stress from HF Radar Sea-Echo Doppler Spectra
12
作者 Chen Xiaomei, Liu Jing, Wang Jianbo, Zhang Ruikang, Wang Dahai, Wang Renhui, Gui Jianian (Department of Physics, Wuhan University, Wuhan 430072,China) Chen Fangyu (Technical Center, Wuhan Iron and Steel Co., Wuhan 430080,China) 《Wuhan University Journal of Natural Sciences》 CAS 1999年第1期73-75,共3页
This paper describes our preliminary results by using electron backscatter diffraction(EBSD) attachment in a scanning electron microscope. These studies revealed that the basal plane of 2H martensite originates from o... This paper describes our preliminary results by using electron backscatter diffraction(EBSD) attachment in a scanning electron microscope. These studies revealed that the basal plane of 2H martensite originates from one {220} P plane of the parent phase, four variants A,B,C,D of a self accommodating plate group originate from various {220} P planes of the parent phase. Their orientation relationships can be determined by EBSD technique. The structural information provided by EBSD technique together with the composition information provided by energy dispersive X ray spectrometer leads to much convincible identification of micro area phases. By this method three phases were identified in as cast Al Cu Fe alloys with composition near that of icosahedral quasicrystal(IQC), namely IQC, λ Al 13 Fe 4 and β phases. Two types of grains were found in an interstitial free steel recrystallized at 750℃.Among them the flat grains possess γ fibre microtexture benifitial to the cold workability. 展开更多
关键词 electron backscatter diffraction shape memory alloy interstitial free steel MICROTEXTURE
下载PDF
Modeling texture development during cold rolling of IF steel by crystal plasticity finite element method
13
作者 Hejie Li Jingtao Han +3 位作者 Huachun Pi Zhengyi Jiang Dongbin Wei A. Kiet Tieu 《Journal of University of Science and Technology Beijing》 CSCD 2008年第6期696-701,共6页
With the consideration of slip deformation mechanism and various slip systems of body centered cubic (BCC) metals, Taylor-type and finite element polycrystal models were embedded into the commercial finite element c... With the consideration of slip deformation mechanism and various slip systems of body centered cubic (BCC) metals, Taylor-type and finite element polycrystal models were embedded into the commercial finite element code ABAQUS to realize crystal plasticity finite element modeling, based on the rate dependent crystal constitutive equations. Initial orientations measured by electron backscatter diffraction (EBSD) were directly input into the crystal plasticity finite element model to simulate the develop- ment of rolling texture of interstitial-free steel (IF steel) at various reductions. The modeled results show a good agreement with the experimental results. With increasing reduction, the predicted and experimental rolling textures tend to sharper, and the results simulated by the Taylor-type model are stronger than those simulated by finite element model.'Conclusions are obtained that rolling textures calculated with 48 { 110} 〈 111 〉+ { 112 } 〈 111〉+ { 123 } 〈 111 〉 slip systems are more approximate to EBSD results. 展开更多
关键词 interstitial-free steel (IF steel) crystal plasticity field emission microscopy (FEM) electron backscatter diffraction(EBSD) rolling texture
下载PDF
Effect of grain boundary characteristic distribution on brittle cracking of ferritic stainless steel
14
作者 Bi Hongyun Yan Haitao +1 位作者 Li Xin Wang Weiming 《Baosteel Technical Research》 CAS 2008年第1期9-12,共4页
In order to better understand the relation between grain boundary characteristic distribution (GBCD) and the brittle cracking of ferritic stainless steel, the GBCD, impact test and bend test were investigated using ... In order to better understand the relation between grain boundary characteristic distribution (GBCD) and the brittle cracking of ferritic stainless steel, the GBCD, impact test and bend test were investigated using scanning electron microscopy (SEM) and the electron backscatter diffraction (EBSD) technique. The results show that a crack occurs preferentially at high angle boundaries, and that low angle and low-∑ coincidence site lattice(CSL) boundaries can offer resistance to the propagation of cracks. It is suggested that an optimum GBCD, i.e. a high frequency of low angle or low-∑ CSL boundaries and discontinuous high angle boundaries network can offer the potential for decreasing the ductile-to-brittle transition temoerature (DBTT) of ferritic stainless steels. 展开更多
关键词 grain boundary characteristic distribution ductile-to-brittle transition temperature ferritic stainless steel electron backscatter diffraction
下载PDF
Additively Manufactured Ti-6Al4V before and after Hot Isostatic Pressing
15
作者 Brad Baker Keegan Wisdom 《World Journal of Engineering and Technology》 2021年第2期268-284,共17页
The crystalline structure and mechanical properties of titanium 6Al 4V produced via selective laser sintering were compared to literature examples and to wrought samples. In total, three sets of samples were analyzed:... The crystalline structure and mechanical properties of titanium 6Al 4V produced via selective laser sintering were compared to literature examples and to wrought samples. In total, three sets of samples were analyzed: wrought, as printed selective laser sintering samples with no post processing, and selective laser sintering samples that were further processed via hot isostatic pressing for final consolidation. Samples were sectioned to fit on graphitic resin pucks and cut from the build plane in two orthogonal planes. Images were taken using a TESCAN MIRA3 scanning electron microscope with electron backscatter diffraction analysis and samples were etched for optical analysis. Hardness of the samples was measured using a Vickers hardness indenter. The overall chemical composition of the samples, both AM and wrought, were similar as confirmed using energy dispersive spectroscopy. Beta grains were observed in a columnar orientation along the build direction, however, the grain orientation did not appear to affect the hardness of the sample. A small amount of grain growth was observed in the post processed samples as compared to the as printed samples. 展开更多
关键词 Additive Manufacturing Selective Laser Sintering Titanium Alloys electron backscatter diffraction
下载PDF
Mechanical properties and texture evolution during hot rolling of AZ31 magnesium alloy 被引量:4
16
作者 孙宏飞 梁书锦 王尔德 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2009年第S02期349-354,共6页
Mechanical properties and texture evolutions of the as-rolled AZ31 Mg sheets were investigated.The results show that the grains of the sheets are significantly refined after hot rolling.The mechanical properties of th... Mechanical properties and texture evolutions of the as-rolled AZ31 Mg sheets were investigated.The results show that the grains of the sheets are significantly refined after hot rolling.The mechanical properties of the as-rolled samples are enhanced due to the grain size refinement.The intensity of basal texture decreases with the increase of deformation ratio,and double-peak type basal texture is discovered in the intermediate and large strain hot rolling processes.The formation of the texture is ascribed to the activities of prismatic and non-basalslips,which is the same as the 30%rolled and 50%rolled samples.The incline of basal planes exerts an effect on the mechanical anisotropy during tension along rolling direction(RD)and transverse direction(TD)at room temperature. 展开更多
关键词 magnesium alloy AZ31 hot rolling TEXTURE mechanical properties electron backscattered diffraction
下载PDF
Effect of Poly-Alkylene-Glycol Quenchant on the Distortion, Hardness, and Microstructure of 65Mn Steel 被引量:1
17
作者 Thi Xuan Tran Xuan Phuong Nguyen +4 位作者 Duong Nam Nguyen Dinh Toai Vu Minh Quang Chau Osamah Ibrahim Khalaf Anh Tuan Hoang 《Computers, Materials & Continua》 SCIE EI 2021年第6期3249-3264,共16页
Currently,the 65Mn steel is quenched mainly by oil media.Even though the lower cooling rate of oil compared to water reduces the hardness of steel post quenching,the deforming and cracking of parts are often minimized... Currently,the 65Mn steel is quenched mainly by oil media.Even though the lower cooling rate of oil compared to water reduces the hardness of steel post quenching,the deforming and cracking of parts are often minimized.On the other hand,the oil media also has the disadvantage of being ammable,creating smoke that adversely affects the media.The poly alkylene glycol(PAG)polymer quenchant is commonly used for quenching a variety of steels based on its advantages such as non-ammability and exible cooling rate subjected to varying concentration and stirring speed.This article examines the effect of PAG polymer quenching solution(with concentrations of 10%and 20%)on deformation,hardness,and microstructure of C-ring samples made of 65Mn steel.Furthermore,the performance of PAG polymer quenchant is also compared with those of two common quenching solutions:Water and oil.When cooling in water,the C-ring samples had the largest deformation and 2 times higher than the results obtained when a 10%PAG solution was used.In particular,similar levels of deformation on the C-ring samples were observed in both cases of 20%PAG solution and oil as the primary quenching media.Furthermore,the hardness level measured between the sampled parts quenched in the 20%PAG solution appeared to be more uniform than that obtained from the oil-quenched sample.The study of the microscopic structure of steel by optical microscopy combined with X-ray diffraction showed that the water hardened sample exhibited cracks and comprised of two phases,martensite and retained austenite.According to the results of Electron Back Scattering Diffraction(EBSD)analysis and backscattering electronic image(BSE),the content of austenite residue in the sample when the sample was cooled in PAG 10 and 20%solution was 3.21%and 4.73%,respectively and smaller than the measurements obtained from oil quenching solution.Thus,the 65Mn steel is cooled in 20%PAG solution for high hardness and more evenly distributed than when it is quenched in oil while still ensuring a small level of deformation.Therefore,the PAG 20%solution can completely replace oil as the main media used to quench the 65Mn steel. 展开更多
关键词 Polyethylene glycol electron backscattering diffraction quenching media cooling rate backscattering electronic image
下载PDF
Effect of Equal Channel Angular Extrusion on the Microstructures and Properties of Two Extruded Al-Mg-Si Alloys
18
作者 G.W.Lorimer 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第5期623-629,共7页
The effect of equal channel angular extrusion (ECAE) on the microstructure of two Al-Mg-Si extrusion alloys was investigated by high resolution electron backscattered diffraction (EBSD) using a field emission gun ... The effect of equal channel angular extrusion (ECAE) on the microstructure of two Al-Mg-Si extrusion alloys was investigated by high resolution electron backscattered diffraction (EBSD) using a field emission gun scanning electron microscope (FEG-SEM) and a transmission electron microscope (TEM). Two contrasting alloys: a dilute alloy, based on alloy 6061 and a concentrated alloy, based on alloy 6069 were employed for this research. It has been found that prior ECAE to extrusion promotes high angle grain boundaries (HAGBs) in the extrusions, and the increase in HAGBs ratio is due to the large shear deformation involved in the process of ECAE. Tensile testing results show that a further ageing treatment strengthens the alloys after extrusion and the ECAE processed extrusions are more ductile than conventional extrusions. 展开更多
关键词 Equal channel angular extrusion electron backscattered diffraction Al-Mg-Si alloys
下载PDF
Texture evolution during semicontinuous equal-channel angular extrusion process of interstitial-free steel
19
作者 YAN Bo JIAO Sihai ZHANG Dianhua 《Baosteel Technical Research》 CAS 2015年第4期45-51,共7页
Semicontinuous equal-channel angular extrusion( SC-ECAE) is a novel severe plastic deformation technique that has been developed to produce ultrafine-grain steels. Instead of external forces being exerted on specime... Semicontinuous equal-channel angular extrusion( SC-ECAE) is a novel severe plastic deformation technique that has been developed to produce ultrafine-grain steels. Instead of external forces being exerted on specimens in the conventional ECAE,driving forces are applied to dies in SC-EACE. The deformation of interstitial-free( IF) steel w as performed at room temperature,and individual specimens w ere repeatedly processed at various passes. An overall grain size of 0. 55 μm w as achieved after 10 passes. During SC-ECAE,the main textures of IF steel included { 111} ,{ 110} ,{ 112} ,{ 110} ,and { 110} At an early stage,increasing dislocations induce new textures and increase intensity. When the deformation continues,low-angle boundaries are formed betw een dislocation cell bands,w hich cause some dislocation cell bands to change their orientation,and therefore,the intensity of the textures begins to decrease. After more passes,the intensity of textures continues to decrease w ith high-angle boundaries,and the sub-grains in dislocation cell bands continuously increase. The present study reports the evolution of textures during deformation; these w ere examined and characterized using high-resolution electron backscattered diffraction( EBSD) in a field emission scanning electron microscope. The mechanisms of texture evolution are discussed. 展开更多
关键词 severe plastic deformation semicontinuous equal-channel angular extrusion interstitial-free steel texture evolution electron backscattered diffraction
下载PDF
Microstructure evolution and phase transformation of the mushy zone in a quenchedβ-solidifying TiAl alloy
20
作者 Fuqiang Zhang Xianfei Ding +5 位作者 Leming Xu Xin Feng Hai Nan Jianping He Yongfeng Liang Junpin Lin 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第2期28-41,共14页
This study investigates the phase constitutions and transformations that occur in the mushy zone and in the adjacent phase fields of a directionally solidified Ti-44Al-8Nb-1Cr alloy via quenching technique.The results... This study investigates the phase constitutions and transformations that occur in the mushy zone and in the adjacent phase fields of a directionally solidified Ti-44Al-8Nb-1Cr alloy via quenching technique.The results indicate that the mushy zone consists of unmeltedβdendrites and interdendritic liquid,whose formation can be attributed to the difference in melting point aroused by local heterogeneity in solutecontent.Theβdendrite is composed of numerous subgrains with various orientations.During quenching,theβdendrite transforms into Widmanstättenαvia a precipitation reaction,owing to the decreasing cooling rate caused by heat transfer from the surrounding liquid.Additionally,after quenching,the interdendritic liquid is transformed intoγplates.Within the singleβphase field and the lower part of the mushy zone,a massive transformation ofβtoγoccurs.Conversely,in theβ+αphase field,bothβandαphases are retained to ambient temperature.During the heating process,the transformation ofα→βgives rise to the formation ofβvariants,which affects the orientation ofβdendrites in the mushy zone.The growth kinematics of theα→βtransformation was elucidated,revealing the preferential growth directions of111and112forβvariants.Furthermore,this study presents an illustration of the formation process of the mushy zone and the microstructural evolution during the heating and quenching process. 展开更多
关键词 Titanium aluminides Mushy zone Quenching electron backscattering diffraction Phase transformation
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部