A complex example of electrolytic redox system involving 47 species, 3 electron-active elements and five (3 am-phiprotic + 2 aprotic) co-solvents, is presented. Mixed solvates of the species thus formed are admitted i...A complex example of electrolytic redox system involving 47 species, 3 electron-active elements and five (3 am-phiprotic + 2 aprotic) co-solvents, is presented. Mixed solvates of the species thus formed are admitted in the system considered. It is proved that the Generalized Electron Balance (GEB) in its simplest form obtained according to the Approach II to GEB is identical with the one obtained for aqueous media and binary-solvent system, and is equivalent to the Approach I to GEB.展开更多
The paper refers to disproportionation of HIO and NaIO in aqueous media, in static and dynamic systems. The results of calculations, realized according to GATES/GEB principles, with use of an iterative computer progra...The paper refers to disproportionation of HIO and NaIO in aqueous media, in static and dynamic systems. The results of calculations, realized according to GATES/GEB principles, with use of an iterative computer program, are presented graphically. An example of the computer program with all physicochemical knowledge involved in the related algorithm is attached herewith.展开更多
The formalism realised according to the Generalised Approach to Electrolytic Systems (GATES) is presented and applied to typical redox systems known from the laboratory practice. In any redox system, the Generalized E...The formalism realised according to the Generalised Approach to Electrolytic Systems (GATES) is presented and applied to typical redox systems known from the laboratory practice. In any redox system, the Generalized Electron Balance (GEB), perceived as the law of the matter conservation, is derivable from linear combination 2·f(O) – f(H) of elemental balances: f(O) for oxygen and f(H) for hydrogen. It is an equation linearly independent from other (charge and concentration) balances referred to an electrolytic redox system (aqueous media) of any degree of complexity, and named as the primary form of GEB and then denoted as pr-GEB. A compact equation for GEB is obtained from linear combination of 2·f(O) – f(H) with other (charge and concentration) balances. For a non-redox electrolytic system, of any degree of complexity, the balance 2·f(O) – f(H) is not an independent equation. In the derivation of GEB, all known components (species) of the system tested, taken in their real (i.e., hydrated) form, are involved in the balances, and none simplifying assumptions are needed. The redox systems are simulated with use of an iterative computer program.展开更多
The Generalized Electron Balance (GEB), together with charge balance and concentration balances, completes the set of equations needed for resolution of electrolytic redox systems. The general formulae for GEB were ob...The Generalized Electron Balance (GEB), together with charge balance and concentration balances, completes the set of equations needed for resolution of electrolytic redox systems. The general formulae for GEB were obtained according to Approach II to GEB, i.e., on the basis of the equation 2?f(O) ? f(H) obtained from elemental balances: f(H) for H, and f(O) for O. Equivalency of the Approach II and the Approach I to GEB was proved for an aqueous solution and a binary-solvent system. On this basis, a compact form of GEB was derived.展开更多
The dependence of the performance of organic light-emitting devices(OLEDs) on the sheet resistance of indiumtin-oxide(ITO) anodes was investigated by measuring the steady state current density brightness voltage c...The dependence of the performance of organic light-emitting devices(OLEDs) on the sheet resistance of indiumtin-oxide(ITO) anodes was investigated by measuring the steady state current density brightness voltage characteristics and the electroluminescent spectra. The device with a higher sheet resistance anode shows a lower current density, a lower brightness level, and a higher operation voltage. The electroluminescence(EL) efficiencies of the devices with the same structure but different ITO anodes show more complicated differences. Furthermore, the shift of the light-emitting zone toward the anode was found when an anode with a higher sheet resistance was used. These performance differences are discussed and attributed to the reduction of hole injection and the increase in voltage drop over ITO anode with the increase in sheet resistance.展开更多
There are two different definitions for specifying the mean effective ion charge Zeff in plasmas: a) from the Spizer electrical resistivity of the plasma and b) from bremsstrahlung radiation losses of the plasma. I...There are two different definitions for specifying the mean effective ion charge Zeff in plasmas: a) from the Spizer electrical resistivity of the plasma and b) from bremsstrahlung radiation losses of the plasma. In this paper Zeff in the centre of tokamak ohmic discharges has been determined from information on sawtooth-relaxations of the steady state plasma, based on the analysis for the power balance of the plasma electrons in the plasma centre during the period of recovery after the sawtooth crashes. This method is found to supply reliable results for tokamak parameters. While its application requires some efforts in data analysis, it can provide a reliable determination of Zeff, independent of the information from bremsstrahlung radiation losses of the plasma.展开更多
文摘A complex example of electrolytic redox system involving 47 species, 3 electron-active elements and five (3 am-phiprotic + 2 aprotic) co-solvents, is presented. Mixed solvates of the species thus formed are admitted in the system considered. It is proved that the Generalized Electron Balance (GEB) in its simplest form obtained according to the Approach II to GEB is identical with the one obtained for aqueous media and binary-solvent system, and is equivalent to the Approach I to GEB.
文摘The paper refers to disproportionation of HIO and NaIO in aqueous media, in static and dynamic systems. The results of calculations, realized according to GATES/GEB principles, with use of an iterative computer program, are presented graphically. An example of the computer program with all physicochemical knowledge involved in the related algorithm is attached herewith.
文摘The formalism realised according to the Generalised Approach to Electrolytic Systems (GATES) is presented and applied to typical redox systems known from the laboratory practice. In any redox system, the Generalized Electron Balance (GEB), perceived as the law of the matter conservation, is derivable from linear combination 2·f(O) – f(H) of elemental balances: f(O) for oxygen and f(H) for hydrogen. It is an equation linearly independent from other (charge and concentration) balances referred to an electrolytic redox system (aqueous media) of any degree of complexity, and named as the primary form of GEB and then denoted as pr-GEB. A compact equation for GEB is obtained from linear combination of 2·f(O) – f(H) with other (charge and concentration) balances. For a non-redox electrolytic system, of any degree of complexity, the balance 2·f(O) – f(H) is not an independent equation. In the derivation of GEB, all known components (species) of the system tested, taken in their real (i.e., hydrated) form, are involved in the balances, and none simplifying assumptions are needed. The redox systems are simulated with use of an iterative computer program.
文摘The Generalized Electron Balance (GEB), together with charge balance and concentration balances, completes the set of equations needed for resolution of electrolytic redox systems. The general formulae for GEB were obtained according to Approach II to GEB, i.e., on the basis of the equation 2?f(O) ? f(H) obtained from elemental balances: f(H) for H, and f(O) for O. Equivalency of the Approach II and the Approach I to GEB was proved for an aqueous solution and a binary-solvent system. On this basis, a compact form of GEB was derived.
基金Supported by the National Natural Science Foundation of China(No. 20372060), the Key National Natural Science Foundationof China(No. 20131010), the Important National Natural Science Foundation of China(No. 20490210), the"863"Program(Nos.2002AA302105 and 2002AA324080) and Foreign Communion &Cooperation of National Natural Science Foundation of China(No.20340420326).
文摘The dependence of the performance of organic light-emitting devices(OLEDs) on the sheet resistance of indiumtin-oxide(ITO) anodes was investigated by measuring the steady state current density brightness voltage characteristics and the electroluminescent spectra. The device with a higher sheet resistance anode shows a lower current density, a lower brightness level, and a higher operation voltage. The electroluminescence(EL) efficiencies of the devices with the same structure but different ITO anodes show more complicated differences. Furthermore, the shift of the light-emitting zone toward the anode was found when an anode with a higher sheet resistance was used. These performance differences are discussed and attributed to the reduction of hole injection and the increase in voltage drop over ITO anode with the increase in sheet resistance.
基金Project supported by the Nuclear Science Foundation (Grant No1997517).
文摘There are two different definitions for specifying the mean effective ion charge Zeff in plasmas: a) from the Spizer electrical resistivity of the plasma and b) from bremsstrahlung radiation losses of the plasma. In this paper Zeff in the centre of tokamak ohmic discharges has been determined from information on sawtooth-relaxations of the steady state plasma, based on the analysis for the power balance of the plasma electrons in the plasma centre during the period of recovery after the sawtooth crashes. This method is found to supply reliable results for tokamak parameters. While its application requires some efforts in data analysis, it can provide a reliable determination of Zeff, independent of the information from bremsstrahlung radiation losses of the plasma.