potential flow control method for large scale flow.In this paper,a computational fluid dynamics model coupled with a multi-fluid plasma model is established to investigate the aerodynamic characteristics induced by el...potential flow control method for large scale flow.In this paper,a computational fluid dynamics model coupled with a multi-fluid plasma model is established to investigate the aerodynamic characteristics induced by electron beam plasma.The results demonstrate that the electron beam strongly influences the flow properties,not only in the boundary layers,but also in the main flow.A weak shockwave is induced at the electron beam injection position and develops to the other side of the wind tunnel behind the beam.It brings additional energy into air,and the inducing characteristics are closely related to the beam power and increase nonlinearly with it.The injection angles also influence the flow properties to some extent.Based on this research,we demonstrate that the high energy electron beam air plasma has three attractive advantages in aerodynamic applications,i.e.the high energy density,wide action range and excellent action effect.Due to the rapid development of near space hypersonic vehicles and atmospheric fighters,by optimizing the parameters,the electron beam can be used as an alternative means in aerodynamic steering in these applications.展开更多
Large size of air plasma at near atmospheric pressure has specific effects in aerospace applications. In this paper, a two dimensional multi-fluid model coupled with Monte Carlo (MC) model is established, and some e...Large size of air plasma at near atmospheric pressure has specific effects in aerospace applications. In this paper, a two dimensional multi-fluid model coupled with Monte Carlo (MC) model is established, and some experiments were carried out to investigate the characteristics of electron beam air plasma at pressure of 100-170 Torr. Based on the model, the properties of electron beam air plasma are acquired. The electron density is of the order of 1016 m-3 and the longitudinal size can exceed 1.2 m. The profiles of charged particles demonstrate that the oxygen molecule is very important for air plasma and its elementary processes play a key role in plasma equilibrium processes. The potential is almost negative and a very low potential belt is observed at the edge of plasma acting as a protection shell. A series of experiments were carried out in a low pressure vacuum facility and the beam plasma densities were diagnosed. The experimental results demonstrate that electron density increased with the electron beam energy, and the relatively low pressure was favorable for gaining high density plasma. Hence in order to achieve high density and large size plasma, it requires the researchers to choose proper discharge parameters.展开更多
A practical 2.45-GHz microwave-driven Cs-free H^- source was improved based on the experimental H^- source at Peking University(PKU). Several structural improvements were implemented to meet the practical requiremen...A practical 2.45-GHz microwave-driven Cs-free H^- source was improved based on the experimental H^- source at Peking University(PKU). Several structural improvements were implemented to meet the practical requirements of Xi'an Proton Application Facility(XiPaf). Firstly, the plasma chamber size was optimized to enhance the plasma intensity and stability. Secondly, the filter magnetic field and electron deflecting magnetic field were enhanced to reduce co-extracted electrons. Thirdly, a new two-electrode extraction system with farther electrode gap and enhanced water cooling ability to diminish spark and sputter during beam extraction was applied. At last, the direct H^- current measuring method was adopted by the arrangement of a new pair of bending magnets before Faraday cup(FC) to remove residual electrons. With these improvements, electron cyclotron resonance(ECR) magnetic field optimization experiments and operation parameter variation experiments were carried out on the H^- ion source and a maximum 8.5-mA pure H^- beam was extracted at 50 kV with the time structure of 100 Hz/0.3 ms. The root-mean-square(RMS) emittance of the beam is 0.25 Π·mm·mrad. This improved H^- source and extraction system were maintenance-free for more than 200 hours in operation.展开更多
基金supported by National Natural Science Foundation of China(Grant No.11475131)
文摘potential flow control method for large scale flow.In this paper,a computational fluid dynamics model coupled with a multi-fluid plasma model is established to investigate the aerodynamic characteristics induced by electron beam plasma.The results demonstrate that the electron beam strongly influences the flow properties,not only in the boundary layers,but also in the main flow.A weak shockwave is induced at the electron beam injection position and develops to the other side of the wind tunnel behind the beam.It brings additional energy into air,and the inducing characteristics are closely related to the beam power and increase nonlinearly with it.The injection angles also influence the flow properties to some extent.Based on this research,we demonstrate that the high energy electron beam air plasma has three attractive advantages in aerodynamic applications,i.e.the high energy density,wide action range and excellent action effect.Due to the rapid development of near space hypersonic vehicles and atmospheric fighters,by optimizing the parameters,the electron beam can be used as an alternative means in aerodynamic steering in these applications.
基金supported by National Natural Science Foundation of China(No.10905044)
文摘Large size of air plasma at near atmospheric pressure has specific effects in aerospace applications. In this paper, a two dimensional multi-fluid model coupled with Monte Carlo (MC) model is established, and some experiments were carried out to investigate the characteristics of electron beam air plasma at pressure of 100-170 Torr. Based on the model, the properties of electron beam air plasma are acquired. The electron density is of the order of 1016 m-3 and the longitudinal size can exceed 1.2 m. The profiles of charged particles demonstrate that the oxygen molecule is very important for air plasma and its elementary processes play a key role in plasma equilibrium processes. The potential is almost negative and a very low potential belt is observed at the edge of plasma acting as a protection shell. A series of experiments were carried out in a low pressure vacuum facility and the beam plasma densities were diagnosed. The experimental results demonstrate that electron density increased with the electron beam energy, and the relatively low pressure was favorable for gaining high density plasma. Hence in order to achieve high density and large size plasma, it requires the researchers to choose proper discharge parameters.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11775007 and 11575013)
文摘A practical 2.45-GHz microwave-driven Cs-free H^- source was improved based on the experimental H^- source at Peking University(PKU). Several structural improvements were implemented to meet the practical requirements of Xi'an Proton Application Facility(XiPaf). Firstly, the plasma chamber size was optimized to enhance the plasma intensity and stability. Secondly, the filter magnetic field and electron deflecting magnetic field were enhanced to reduce co-extracted electrons. Thirdly, a new two-electrode extraction system with farther electrode gap and enhanced water cooling ability to diminish spark and sputter during beam extraction was applied. At last, the direct H^- current measuring method was adopted by the arrangement of a new pair of bending magnets before Faraday cup(FC) to remove residual electrons. With these improvements, electron cyclotron resonance(ECR) magnetic field optimization experiments and operation parameter variation experiments were carried out on the H^- ion source and a maximum 8.5-mA pure H^- beam was extracted at 50 kV with the time structure of 100 Hz/0.3 ms. The root-mean-square(RMS) emittance of the beam is 0.25 Π·mm·mrad. This improved H^- source and extraction system were maintenance-free for more than 200 hours in operation.