期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
The Use of an Electron Microchannel as a Self-Extracting and Focusing Plasma Cathode Electron Gun
1
作者 S.CORNISH J.KHACHAN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第2期138-142,共5页
A new and simple type of electron gun is presented.Unlike conventional electron guns,which require a heated filament or extractor,accelerator and focusing electrodes,this gun uses the collimated electron microchannels... A new and simple type of electron gun is presented.Unlike conventional electron guns,which require a heated filament or extractor,accelerator and focusing electrodes,this gun uses the collimated electron microchannels of an inertial electrostatic confinement(IEC) discharge to achieve the same outcome.A cylindrical cathode is placed coaxially within a cylindrical anode to create the discharge.Collimated beams of electrons and fast neutrals emerge along the axis of the cylindrical cathode.This geometry isolates one of the microchannels that emerge in a negatively biased IEC grid.The internal operating pressure range of the gun is 35-190 m Torr.A small aperture separates the gun from the main vacuum chamber in order to achieve a pressure differential.The chamber was operated at pressures of 4-12 m Torr.The measured current produced by the gun was 0.1-3 m A(0.2-14 m A corrected measurement) for discharge currents of 1-45 m A and discharge voltages of 0.5-12 k V.The collimated electron beam emerges from the aperture into the vacuum chamber.The performance of the gun is unaffected by the pressure differential between the vacuum chamber and the gun.This allows the aperture to be removed and the chamber pressure to be equal to the gun pressure if required. 展开更多
关键词 electron beam electron gun plasma gun neutral gun hollow cathode electron beam microchannel IEC inertial electrostatic confinement
下载PDF
Simulation of Secondary Electron and Backscattered Electron Emission in A6 Relativistic Magnetron Driven by Different Cathode
2
作者 刘美琴 李博轮 +2 位作者 刘纯亮 Fuks MIKHAIL Edl SCHAMILOGLU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第1期64-70,共7页
Prticle-in-cell(PIC) simulations demonstrated that,when the relativistic magnetron with diffraction output(MDO) is applied with a 410 kV voltage pulse,or when the relativistic magnetron with radial output is appli... Prticle-in-cell(PIC) simulations demonstrated that,when the relativistic magnetron with diffraction output(MDO) is applied with a 410 kV voltage pulse,or when the relativistic magnetron with radial output is applied with a 350 kV voltage pulse,electrons emitted from the cathode with high energy will strike the anode block wall.The emitted secondary electrons and backscattered electrons affect the interaction between electrons and RF fields induced by the operating modes,which decreases the output power in the radial output relativistic magnetron by about 15%(10%for the axial output relativistic magnetron),decreases the anode current by about 5%(5%for the axial output relativistic magnetron),and leads to a decrease of electronic efficiency by 8%(6%for the axial output relativistic magnetron).The peak value of the current formed by secondary and backscattered current equals nearly half of the amplitude of the anode current,which may help the growth of parasitic modes when the applied magnetic field is near the critical magnetic field separating neighboring modes.Thus,mode competition becomes more serious. 展开更多
关键词 secondary electron and backscattered electron emission relativistic magnetron mode competition critical magnetic field output power anode current electronic efficiency transparent cathode solid cathode
下载PDF
Study of electron-extraction characteristics of an inductively coupled radio-frequency plasma neutralizer 被引量:4
3
作者 贺建武 马隆飞 +3 位作者 薛森文 章楚 段俐 康琦 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第2期122-127,共6页
Inductively coupled radio-frequency(RF) plasma neutralizer(RPN) is an insert-free device that can be employed as an electron source in electric propulsion applications.Electron-extraction characteristics of the RP... Inductively coupled radio-frequency(RF) plasma neutralizer(RPN) is an insert-free device that can be employed as an electron source in electric propulsion applications.Electron-extraction characteristics of the RPN are related to the bulk plasma parameters and the device's geometry.Therefore,the effects of different electron-extraction apertures and operational parameters upon the electron-extraction characteristics are investigated according to the global nonambipolar flow and sheath model.Moreover,these models can also be used to explain why the electron-extraction characteristics of the RPN strongly depend upon the formation of the anode spot.During the experimental study,two types of anode spots are observed.Each of them has unique characteristics of electron extraction.Moreover,the hysteresis of an anode spot is observed by changing the xenon volume-flow rates or the bias voltages.In addition,the rapid ignited method,gas-utilization factor,electron-extraction cost and other factors that need to be considered in the design of the RPN are also discussed. 展开更多
关键词 electron source plasma cathode RF neutralizer RF plasma anode spot
下载PDF
Feedback model of secondary electron emission in DC gas discharge plasmas 被引量:1
4
作者 Saravanan ARUMUGAM Prince ALEX Suraj Kumar SINHA 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第2期128-133,共6页
Feedback is said to exist in any amplifier when the fraction of output power in fed back as an input.Similarly,in gaseous discharge ions that incident on the cathode act as a natural feedback element to stabilize and ... Feedback is said to exist in any amplifier when the fraction of output power in fed back as an input.Similarly,in gaseous discharge ions that incident on the cathode act as a natural feedback element to stabilize and self sustain the discharge.The present investigation is intended to emphasize the feedback nature of ions that emits secondary electrons(SEs)from the cathode surface in DC gas discharges.The average number of SEs emitted per incident ion and non ionic species(energetic neutrals,metastables and photons)which results from ion is defined as effective secondary electronemission coefficient(ESEEC,Eg).In this study,we derive an analytic expression that corroborates the relation betweenEg and power influx by ion to the cathode based on the feedback theory of an amplifier.In addition,experimentally,we confirmed the typical positive feedback nature of SEEfrom the cathode in argon DC glow discharges.The experiment is done for three different cathode material of same dimension(tungsten(W),copper(Cu)and brass)under identical discharge conditions(pressure:0.45 mbar,cathode bias:-600 V,discharge gab:15 cm and operating gas:argon).Further,we found that theEg value of these cathode material controls the amount of feedback power given by ions.The difference in feedback leads different final output i.e the power carried by ion at cathode(Pi C¢∣).The experimentally obtained value of Pi C¢∣is 4.28 W,6.87 W and9.26 W respectively for W,Cu and brass.In addition,the present investigation reveals that the amount of feedback power in a DC gas discharges not only affect the fraction of power fed back to the cathode but also the entire characteristics of the discharge. 展开更多
关键词 feedback secondary electron emission DC gas discharges power influx by ion at cathode cathode temperature
下载PDF
Development of plasma sources for Dipole Research EXperiment(DREX) 被引量:1
5
作者 肖青梅 王志斌 +6 位作者 鄂鹏 王晓钢 肖池阶 任洋 吉瀚涛 毛傲华 李立毅 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第5期15-20,共6页
Dipole Research EXperiment(DREX) is a new terrella device as part of the Space Plasma Environment Research Facility(SPERF) for laboratory studies of space physics relevant to the inner magnetospheric plasmas. Adeq... Dipole Research EXperiment(DREX) is a new terrella device as part of the Space Plasma Environment Research Facility(SPERF) for laboratory studies of space physics relevant to the inner magnetospheric plasmas. Adequate plasma sources are very important for DREX to achieve its scientific goals. According to different research requirements, there are two density regimes for DREX. The low density regime will be achieved by an electron cyclotron resonance(ECR) system for the ‘whistler/chorus' wave investigation, while the high density regime will be achieved by biased cold cathode discharge for the desired ‘Alfvén' wave study. The parameters of ‘whistler/chorus' waves and ‘Alfvén' waves are determined by the scaling law between space and laboratory plasmas in the current device. In this paper, the initial design of these two plasma sources for DREX is described. Focus is placed on the chosen frequency and operation mode of the ECR system which will produce relatively low density ‘artificial radiation belt' plasmas and the seed electrons, followed by the design of biased cold cathode discharge to generate plasma with high density. 展开更多
关键词 Dipole Research EXperiment(DREX) plasma sources electron cyclotron resonance(ECR) bias cold cathode discharge wave particle interaction
下载PDF
Performance of Ag_(2)O/Ag Electrode as Cathodic Electron Acceptor in Microbial Fuel Cell 被引量:2
6
作者 Hong-Yan Dai Hui-Min Yang +2 位作者 Xuan Jian Xian Liu Zhen-Hai Liang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第12期1243-1248,共6页
An Ag2O/Ag electrode was prepared through the electrochemical oxidation of sterling silver. This electrode was used as a cathodic electron acceptor in a microbial fuel cell (MFC). The Ag2O/Ag electrode was character... An Ag2O/Ag electrode was prepared through the electrochemical oxidation of sterling silver. This electrode was used as a cathodic electron acceptor in a microbial fuel cell (MFC). The Ag2O/Ag electrode was characterized by scanning electron microscopy, X-ray powder diffraction and linear sweep voltammetry. The maximum voltage output of the MFC with the AgaO/Ag cathode was maintained at between 0.47 and 0.5 V in 100 cycles, indicating the good regenerative capacity of the Ag2O/Ag electrode. The overpotential loss for silver oxide was 0.021-0.006 V, and the maximum power output, open circuit potential and short circuit current of the MFC were 1.796 W m^-3, 0.559 V and 9.3375 A m^-3, respectively. The energy required for electrochemical reoxidation ranged from 40% to 55% of the energy produced by the MFC. Results indicated that the AgeO/Ag electrode could be used as a cathodic electron acceptor in MFCs with excellent stability. 展开更多
关键词 Ag2O/Ag electrode Cathodic electron acceptor Microbial fuel cell Regenerative capacity Overpotential loss STABILITY
原文传递
Electricity Production in Microbial Fuel Cell Subjected to Different Operational Modes 被引量:1
7
作者 Hong-Yan Dai Hui-Min Yang +2 位作者 Xian Liu Xuan Jian Zhen-Hai Liang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第5期483-490,共8页
The effects of inoculum species, substrate concentration, temperature, and cathodic electron acceptors on electricity production of microbial fuel cells (MFCs) were investigated in terms of start-up time and power o... The effects of inoculum species, substrate concentration, temperature, and cathodic electron acceptors on electricity production of microbial fuel cells (MFCs) were investigated in terms of start-up time and power output. When inoculated with aeration tank sludge, this MFC outperformed the cell that was inoculated with anaerobic sludge in terms of start-up time and power output. After running for a certain time period, the dominant populations of the two MFCs varied significantly. Within the tested range of substrate concentration (200-1800 mg L-l), the voltage output increased and the time span of the electricity generation lengthened with increasing substrate concentration. As the temperature declined from 35 to 10 ℃, the maximum power density reduced from 2.229 to 1.620 W m-3, and anodic polarization resistance correspondingly dropped from 118 to 98 Ω. The voltage output of MFC-Cu2+ was 0.447 V, which is slightly lower than that achieved with MFC-[Fe(CN)6]3- (0.492 V), thereby indicating that MFCs could be used to treat wastewater con- taining Cu2+ pollutant in the cathode chamber with removal of organics in anode chamber and simultaneous electricity generation. 展开更多
关键词 Microbial fuel cells Inoculum species Cathodic electron acceptors Electricity production
原文传递
A hybrid structure gaseous detector for ion backflow suppression
8
作者 张余炼 祁辉荣 +5 位作者 胡碧涛 王海云 欧阳群 陈元柏 张建 温志文 《Chinese Physics C》 SCIE CAS CSCD 2017年第5期169-173,共5页
A new concept for a hybrid structure gaseous detector module with ion backflow suppression for the time projection chamber in a future circular collider is presented.It is a hybrid structure cascaded Gas Electron Mult... A new concept for a hybrid structure gaseous detector module with ion backflow suppression for the time projection chamber in a future circular collider is presented.It is a hybrid structure cascaded Gas Electron Multiplier(GEM) with a Micromegas detector.Both Micromegas and GEM have the capability to naturally reduce most of the ions produced in the amplification region.The GEM also acts as the preamplifer device and increases gas gain together with the Micromegas.Feasibility tests of the hybrid detector are performed using an ^(55)Fe X-ray source.The energy resolution is better than 27% for 5.9 keV X-rays.It is demonstrated that a backflow ratio better than 0.2% can be reached in the hybrid readout structure at a gain of 5000. 展开更多
关键词 gaseous readout drift suppression chamber electron cascaded anode cathode amplification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部