In order to sample the speed signal of electronic diesel engine in real time and make the engine work reliable, the diesel engine control system's speed acquisition was studied and the problem of speed disturbance...In order to sample the speed signal of electronic diesel engine in real time and make the engine work reliable, the diesel engine control system's speed acquisition was studied and the problem of speed disturbance was solved. The control system was based on the 8?bit electronic control unit(ECU) system and the assembly language was used to design the software for controlling the engine fuel quantity and the turbocharger of the variable geometry turbine for the heavy duty diesel engine. By changing the timing method for speed acquisition, the problem of speed disturbance was solved and the reliability of the ECU was improved.展开更多
The current research of air suspension mainly focuses on the characteristics and design of the air spring. In fact, electronically controlled air suspension (ECAS) has excellent performance in flexible height adjust...The current research of air suspension mainly focuses on the characteristics and design of the air spring. In fact, electronically controlled air suspension (ECAS) has excellent performance in flexible height adjustment during different driving conditions. However, the nonlinearity of the ride height adjusting system and the uneven distribution of payload affect the control accuracy of ride height and the body attitude. Firstly, the three-point measurement system of three height sensors is used to establish the mathematical model of the ride height adjusting system. The decentralized control of ride height and the centralized control of body attitude are presented to design the ride height control system for ECAS. The exact feedback linearization method is adopted for the nonlinear mathematical model of the ride height system. Secondly, according to the hierarchical control theory, the variable structure control (VSC) technique is used to design a controller that is able to adjust the ride height for the quarter-vehicle anywhere, and each quarter-vehicle height control system is independent. Meanwhile, the three-point height signals obtained by three height sensors are tracked to calculate the body pitch and roll attitude over time, and then by calculating the deviation of pitch and roll and its rates, the height control correction is reassigned based on the fuzzy algorithm. Finally, to verify the effectiveness and performance of the proposed combined control strategy, a validating test of ride height control system with and without road disturbance is carried out. Testing results show that the height adjusting time of both lifting and lowering is over 5 s, and the pitch angle and the roll angle of body attitude are less than 0.15°. This research proposes a hierarchical control method that can guarantee the attitude stability, as well as satisfy the ride height tracking system.展开更多
Chinese traditional medicine wastewater, rich in macromolecule and easy to foam in aerobic biodegradation such as Glycosides, was treated by two identical bench-scale aerobic submerged membrane bioreactors (SMBRs) o...Chinese traditional medicine wastewater, rich in macromolecule and easy to foam in aerobic biodegradation such as Glycosides, was treated by two identical bench-scale aerobic submerged membrane bioreactors (SMBRs) operated in parallel under the same feed, equipped with the same electronic control backwashing device. One was used as the control SMBR (CSMBR) while the other was dosed with powdered activated carbon (PAC) (PAC-amended SMBR, PSMBR). The backwashing interval was 5 min. One suction period was about 90 min by adjusting preestablished backwashing vacuum and pump frequency. The average flux of CSMBR during a steady periodic state of 24 d (576 h) was 5.87 L/h with average hydraulic residence time (HRT) of 5.97 h and that of PSMBR during a steady periodic state of 30 d (720 h) was 5.85 L/h with average HRT of 5.99 h. The average total chemical oxygen demand (COD) removal efficiency of CSMBR was 89.29% with average organic loading rate (OLR) at 4.16 kg COD/(m^3.d) while that of PSMBR was 89.79% with average OLR at 5.50 kg COD/(m^3.d). COD concentration in the effluent of both SMBRs achieved the second level of the general wastewater effluent standard GB8978-1996 for the raw medicine material industry (300 mg/L). Hence, SMBR with electronic control backwashing was a viable process for medium-strength Chinese traditional medicine wastewater treatment. Moreover, the increasing rates of preestablished backwashing vacuum, pump frequency, and vacuum and flux loss caused by mixed liquor in PSMBR all lagged compared to those in CSMBR; thus the actual operating time of the PSMBR system without membrane cleaning was extended by up to 1.25 times in contrast with the CSMBR system, and the average total COD removal efficiency of PSMBR was enhanced with higher average OLR.展开更多
The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on t...The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties.展开更多
The rising number of electronic control units (ECUs) in vehicles and the decreasing time to market have led to the need for advanced methods of calibration. A multi-ECU calibration system was developed based on the ...The rising number of electronic control units (ECUs) in vehicles and the decreasing time to market have led to the need for advanced methods of calibration. A multi-ECU calibration system was developed based on the explicit calibration protocol (XCP) and J1939 communication protocol to satisfy the need of calibrating multiple ECUs simultaneously. The messages in the controller area network (CAN) are defined in the J1939 protocol. Each CAN node can get its own calibration messages and information from other ECUs, and block other messages by qualifying the CAN messages with priority, source or destination address. The data field of the calibration message is designed with the XCP, with CAN acting as the transport layer. The calibration sessions are setup with the event-triggered XCP driver in the master node and the responding XCP driver in the slave nodes. Mirroring calibration variables from ROM to RAM enables the user to calibrate ECUs online. The application example shows that the multi-ECU calibration system can calibrate multiple ECUs simultaneously, and the main program can also accomplish its calculation and send commands to the actuators in time. By the multi-ECU calibration system, the calibration effort and time can be reduced and the variables in ECU can get a better match with the variables of other ECUs.展开更多
In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about th...In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about the partial working processes of the diesel engine, the amount of heat energy, enough to make the fuel self ignite at the end of compression process at different temperatures of coolant and intake air, was calculated. Several HY20 preheating plugs were used to heat up the intake air. Meanwhile, an electronic control system based on 8 bit micro controller unit (MCS 8031) was designed to automatically control the process of heating intake air. According to the various temperatures of coolant and ambient air, one plug or two plugs can automatically be selected to heat intake air. The demo experiment validated that the total system could operate successfully and achieve the scheduled function.展开更多
A hardware-in-the-loop simulating platform is developed to avoid designing defects caused by the complicated logical structure and multiple-functional buildup of the dectronic control unit(ECU)in modem diesel engine...A hardware-in-the-loop simulating platform is developed to avoid designing defects caused by the complicated logical structure and multiple-functional buildup of the dectronic control unit(ECU)in modem diesel engines, and to diminish potential damages on components or human exposure to dangers in R&D en- deavor. This plat-form consists of a computer installed with software Matlab/Simulink/RTW and dSPACE/ ControlDesk; a diesel engine ECU, and a dSPACE autobox which runs a real-time diesel engine model. A typical model of diesel engine with turbocharger and intercooler is presented. Based on this model our research is carried out with a real ECU to test its software control strategies. Results show that by using the diesel engine model downloaded inside, the hardware-in-the-loop platform can simulate diesel engine's working conditions and generate all kinds of sensor signals which ECU needs on a real-time basis. So the ECU control strategies can be validated and relevant parameters roughly calibrated.展开更多
Today’s vehicles use electronic control units(ECU) to control engine/transmission, body and other amenities. All the vehicle performance depends on a lot of physical values and influence factors. This leads to a larg...Today’s vehicles use electronic control units(ECU) to control engine/transmission, body and other amenities. All the vehicle performance depends on a lot of physical values and influence factors. This leads to a large number of control and regulation parameters in the ECU software. The ultimate objective of calibration work is the optimum determination of these parameters. Qualitatively excellent results can only be achieved in a shorter time by using a highly efficient calibration system. This paper provided an overview of a new calibration tool based on KWP2000 and gave an example calibration with this tool.展开更多
By means of circuit simulation, hardware of electronic control unit (ECU) of high pressure common-rail electronic control fuel system for diesel engine is designed. According to the system requirements for hardware ...By means of circuit simulation, hardware of electronic control unit (ECU) of high pressure common-rail electronic control fuel system for diesel engine is designed. According to the system requirements for hardware of ECU, signal-processing circuit of variable reluctance (VR) sensor, filter circuit for input signal, high voltage power circuit and driver and protection circuit of solenoid are simulated as emphases. Difficulties of wide scope of VR sensor output signal, efficiency of high voltage power and reliable and swift driver of solenoid are solved. The results of simulation show that the hardware meets the requirement of the fuel system. At the same time, circuit simulation can greatly increase quality of the design, alleviate design labor and shorten design time.展开更多
The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation...The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation, the thermal design of ECU for electronic unit pump (EUP) fuel system is applied. The power dissipation model of each power component in the ECU is created and simulated. According to the analyses of simulation results, the factors which affect the power dissipation of components are analyzed. Then the ways for reducing the power dissipation of power components are carried out. The power dissipation of power components at different engine state is calculated and analyzed. The maximal power dissipation of each power component in all possible engine state is also carried out based on these simulations. A cooling system is designed based on these studies. The tests show that the maximum total power dissipation of ECU drops from 43.2 W to 33.84 W after these simulations and optimizations. These applications of simulations in thermal design of ECU can greatly increase the quality of the design, save the design cost and shorten design time展开更多
To alleviate the influence of gas compressibility on the process performance of time-pressure dispensing for electronics encapsulation,a predictive model is developed based on power-law fluid to estimate the encapsula...To alleviate the influence of gas compressibility on the process performance of time-pressure dispensing for electronics encapsulation,a predictive model is developed based on power-law fluid to estimate the encapsulant amount dispensed.Based on the simple and effective model,a run by run (RbR) supervisory control scheme is delivered to compensate the variation resulting from gas volume change in the syringe.Both simulation and experiment have shown that the dispensing consistency has been greatly improved with the model-based RbR control strategy developed in this paper.展开更多
This paper presents a simple sliding mode control strategy used for an electronic differential system for electric vehicle with two independent wheel drives. When a vehicle drives along a curved road lane, the speed o...This paper presents a simple sliding mode control strategy used for an electronic differential system for electric vehicle with two independent wheel drives. When a vehicle drives along a curved road lane, the speed of the inner wheel has to be different from that of the outer wheel in order to prevent the vehicle from vibrating and travelling an unsteady path. Because each wheel of this electrical vehicle has independent driving force, an electrical differential system is required to replace a gear differential system. However, it is difficult to analyse the nonlinear behaviour of the differential system in relation to the speed and steering angle, as well as vehicle structure. The proposed propulsion system consists of two permanent magnet synchronous machines that ensure the drive of the two back driving wheels. The proposed control structure called independent machines for speed control allows the achievement of an electronic differential which ensures the control of the vehicle behaviour on the road. It also allows to control, independently, every driving wheel to turn at different speeds in any curve. Analysis and simulation results of the proposed system are presented in this paper.展开更多
The performance of the electronic unit pump (EUP) diesel engine is studied, it will be used in the integrated powertrain and its multi parameters are controllable. Both the theoretical analysis and experiment research...The performance of the electronic unit pump (EUP) diesel engine is studied, it will be used in the integrated powertrain and its multi parameters are controllable. Both the theoretical analysis and experiment research are taken. A control unit for the fuel quantity and timing in crankshaft domain is designed on this basis and the engine experiment test has been done. For the constant speed camshaft driving EUP system, the fuel quantity will increase as the supply angle goes up and injection timing has no effect. The control precision can reach 1°CA. The full injection timing MAP and engine peak performance curves are made successfully.展开更多
A Phase-change thermal control unit( PTCU) filled with metallic phase change material( PCM) Bismuth alloy for electric devices thermal protection was developed and investigated experimentally. The PTCU filled with PCM...A Phase-change thermal control unit( PTCU) filled with metallic phase change material( PCM) Bismuth alloy for electric devices thermal protection was developed and investigated experimentally. The PTCU filled with PCM was designed and manufactured. Resistance heating components( RCHs) produced 1 W,3 W, 5 W,7W,and 10 W for simulating heat generation of electronic devices. At various heating power levels,the performance of PTCU were tested during heating period and one duty cycle period. The experimental results show that the PTCU delays RCH reaching the maximum operating temperature. Also,a numerical model was developed to enable interpretation of experimental results and to perform parametric studies. The results confirmed that the PTCU is suitable for electric devices thermal control.展开更多
This paper gives the brief view of the electronic control system of SPACE SOLAR TELESCOPE (SST), especially the On Board Data Handling unit (OBDH) on the SST which control the operation of the instrument, acquire data...This paper gives the brief view of the electronic control system of SPACE SOLAR TELESCOPE (SST), especially the On Board Data Handling unit (OBDH) on the SST which control the operation of the instrument, acquire data and make data analysis and storage. In OBDH, the Scientific Data Unit (SDU) is a special unit that requires high speed computer. In this paper gives a brief comparison of two possible choices and discuss selection of electronic parts in the space environment.展开更多
This paper is concerned with the development of electronic controller for turbine POwer units. In order to increase the reliability of the POwer unit, three control loops working in the hi-backup mode have been employ...This paper is concerned with the development of electronic controller for turbine POwer units. In order to increase the reliability of the POwer unit, three control loops working in the hi-backup mode have been employed. This control strategy is able to satisfy the demands of the application of the power unit to the aviation fields.展开更多
A system study of the three-dimensional normal stress for regulating electronic structure and magnetic property of Fe_2Ge is studied. The density states of Fe more than 92% contribution come from Fe 3d,the density sta...A system study of the three-dimensional normal stress for regulating electronic structure and magnetic property of Fe_2Ge is studied. The density states of Fe more than 92% contribution come from Fe 3d,the density states of Ge mainly contributed from Ge 4p and Ge 4s,and the Fe 3d spin induces the Ge 4p electron transfer. The inductive effect increases germanium electron energy,weakens the Fe spin density of states,opposes the stability of the ferromagnetic state. The magnetic moment varies from 5 to 3 μB with the stress charges from-30 to 30 GPa. The charge of Fe is negative whereas the Ge atom is positively charged,the Fe atom loses charge,the charge transfers to the Ge atom. The unevenly distributed charge forms the newoccupy state and spin polarization state in the Fe_2Ge electron structure system. The Fe is the electron donor,the total electron is transferred to Ge,but the total numbers of gain electron and total numbers of lost electron are not equal,so the Fe_2Ge electron system may have hybridization between the Fe 3d state and Ge 4p state.The magnetic of Fe_2Ge mainly comes from the unoccupied Fe 3d orbital,the Fe 3d is positive spinpolarization state and the spin-polarization strength is decreased,the Ge 4p is negative spin-polarization state and the spin-polarization strength are increased. M oreover,electrons-spin polarization is relevant to the structure parameters of the Fe_2Ge system,and controls spin-polarized electronic behavior by means of adjusting ferromagnetic.展开更多
A 1-bit electronically controlled metasurface reflectarray is presented to achieve beam steering with multiple polarization manipulations. A metsurface unit cell loaded by two PIN diodes is designed. By switching the ...A 1-bit electronically controlled metasurface reflectarray is presented to achieve beam steering with multiple polarization manipulations. A metsurface unit cell loaded by two PIN diodes is designed. By switching the two PIN diodes between ON and OFF states, the isotropic and anisotropic reflections can be flexibly achieved. For either the isotropic reflection or the anisotropic reflection, the two operation states achieve the reflection coefficients with approximately equal magnitude and 180°out of phase, thus giving rise to the isotropic/anisotropic 1-bit metasurface unit cells. With the 1-bit unit cells, a 12-by-12 metasurface reflectarray is optimally designed and fabricated. Under either y-or x-polarized incident wave illumination, the reflectarray can achieve the co-polarized and cross-polarized beam scanning, respectively, with the peak gains of 20.08 d Bi and 17.26 d Bi within the scan range of about ±50°. With the right-handed circular polarization(RHCP) excitation, the left-handed circular polarization(LHCP) radiation with the peak gain of 16.98 d Bic can be achieved within the scan range of ±50°. Good agreement between the experimental results and the simulation results are observed for 2D beam steering and polarization manipulation capabilities.展开更多
Based on the dynamics of ABS-equipped vehicles during cornering braking, the electronic brake- force distribution (EBD) control methods of ABS-equipped vehicles during cornering braking are proposed. According to th...Based on the dynamics of ABS-equipped vehicles during cornering braking, the electronic brake- force distribution (EBD) control methods of ABS-equipped vehicles during cornering braking are proposed. According to the dynamics and the tire model under tire adhesion limit, the stability acceptance criteria of vehicles during cornering braking are proposed. According to the stability acceptance criteria and the ABS control, the EBD control methods of ABS-equipped vehicles during cornering braking are implemented by adjusting the threshold values of tires slip independently. The vehicle states during cornering braking at two typical initial velocities of the vehicle are analyzed by the EBD control methods, whose results indicate the EBD control methods can improve the braking performances of the vehicle during cornering braking comparing with the ABS control.展开更多
The accurate control for the vehicle height and leveling adjustment system of an electronic air suspension(EAS) still is a challenging problem that has not been effectively solved in prior researches. This paper propo...The accurate control for the vehicle height and leveling adjustment system of an electronic air suspension(EAS) still is a challenging problem that has not been effectively solved in prior researches. This paper proposes a new adaptive controller to control the vehicle height and to adjust the roll and pitch angles of the vehicle body(leveling control) during the vehicle height adjustment procedures by an EAS system. A nonlinear mechanism model of the full?car vehicle height adjustment system is established to reflect the system dynamic behaviors and to derive the system optimal control law. To deal with the nonlinear characters in the vehicle height and leveling adjustment processes, the nonlinear system model is globally linearized through the state feedback method. On this basis, a fuzzy sliding mode controller(FSMC) is designed to improve the control accuracy of the vehicle height adjustment and to reduce the peak values of the roll and pitch angles of the vehicle body. To verify the effectiveness of the proposed control method more accurately, the full?car EAS system model programmed using AMESim is also given. Then, the co?simulation study of the FSMC performance can be conducted. Finally, actual vehicle tests are performed with a city bus, and the test results illustrate that the vehicle height adjustment performance is effectively guaranteed by the FSMC, and the peak values of the roll and pitch angles of the vehicle body during the vehicle height adjustment procedures are also reduced significantly. This research proposes an effective control methodology for the vehicle height and leveling adjustment system of an EAS, which provides a favorable control performance for the system.展开更多
文摘In order to sample the speed signal of electronic diesel engine in real time and make the engine work reliable, the diesel engine control system's speed acquisition was studied and the problem of speed disturbance was solved. The control system was based on the 8?bit electronic control unit(ECU) system and the assembly language was used to design the software for controlling the engine fuel quantity and the turbocharger of the variable geometry turbine for the heavy duty diesel engine. By changing the timing method for speed acquisition, the problem of speed disturbance was solved and the reliability of the ECU was improved.
基金Supported by National Natural Science Foundation of China(Grant No.51105177)Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20131255)+2 种基金Research Fund for the Doctoral Program of Higher Education of China(Grant No.20113227120015)Qing Lan Project of Jiangsu Province of China,Scientific Research Foundation for Advanced Talents,Jiangsu University,China(Grant No.11JDG047)Hunan Provincial Natural Science Foundation of China(Grant No.12JJ6036)
文摘The current research of air suspension mainly focuses on the characteristics and design of the air spring. In fact, electronically controlled air suspension (ECAS) has excellent performance in flexible height adjustment during different driving conditions. However, the nonlinearity of the ride height adjusting system and the uneven distribution of payload affect the control accuracy of ride height and the body attitude. Firstly, the three-point measurement system of three height sensors is used to establish the mathematical model of the ride height adjusting system. The decentralized control of ride height and the centralized control of body attitude are presented to design the ride height control system for ECAS. The exact feedback linearization method is adopted for the nonlinear mathematical model of the ride height system. Secondly, according to the hierarchical control theory, the variable structure control (VSC) technique is used to design a controller that is able to adjust the ride height for the quarter-vehicle anywhere, and each quarter-vehicle height control system is independent. Meanwhile, the three-point height signals obtained by three height sensors are tracked to calculate the body pitch and roll attitude over time, and then by calculating the deviation of pitch and roll and its rates, the height control correction is reassigned based on the fuzzy algorithm. Finally, to verify the effectiveness and performance of the proposed combined control strategy, a validating test of ride height control system with and without road disturbance is carried out. Testing results show that the height adjusting time of both lifting and lowering is over 5 s, and the pitch angle and the roll angle of body attitude are less than 0.15°. This research proposes a hierarchical control method that can guarantee the attitude stability, as well as satisfy the ride height tracking system.
基金Project supported by the Hi-Tech Research and Development Program(863)of China(No. 2002AA601310).
文摘Chinese traditional medicine wastewater, rich in macromolecule and easy to foam in aerobic biodegradation such as Glycosides, was treated by two identical bench-scale aerobic submerged membrane bioreactors (SMBRs) operated in parallel under the same feed, equipped with the same electronic control backwashing device. One was used as the control SMBR (CSMBR) while the other was dosed with powdered activated carbon (PAC) (PAC-amended SMBR, PSMBR). The backwashing interval was 5 min. One suction period was about 90 min by adjusting preestablished backwashing vacuum and pump frequency. The average flux of CSMBR during a steady periodic state of 24 d (576 h) was 5.87 L/h with average hydraulic residence time (HRT) of 5.97 h and that of PSMBR during a steady periodic state of 30 d (720 h) was 5.85 L/h with average HRT of 5.99 h. The average total chemical oxygen demand (COD) removal efficiency of CSMBR was 89.29% with average organic loading rate (OLR) at 4.16 kg COD/(m^3.d) while that of PSMBR was 89.79% with average OLR at 5.50 kg COD/(m^3.d). COD concentration in the effluent of both SMBRs achieved the second level of the general wastewater effluent standard GB8978-1996 for the raw medicine material industry (300 mg/L). Hence, SMBR with electronic control backwashing was a viable process for medium-strength Chinese traditional medicine wastewater treatment. Moreover, the increasing rates of preestablished backwashing vacuum, pump frequency, and vacuum and flux loss caused by mixed liquor in PSMBR all lagged compared to those in CSMBR; thus the actual operating time of the PSMBR system without membrane cleaning was extended by up to 1.25 times in contrast with the CSMBR system, and the average total COD removal efficiency of PSMBR was enhanced with higher average OLR.
基金Supported by National Natural Science Foundation of China(Grant No.51375212)Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions of China+1 种基金Research Fund for the Doctoral Program of Higher Education of China(Grant No.20133227130001)China Postdoctoral Science Foundation(Grant No.2014M551518)
文摘The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties.
文摘The rising number of electronic control units (ECUs) in vehicles and the decreasing time to market have led to the need for advanced methods of calibration. A multi-ECU calibration system was developed based on the explicit calibration protocol (XCP) and J1939 communication protocol to satisfy the need of calibrating multiple ECUs simultaneously. The messages in the controller area network (CAN) are defined in the J1939 protocol. Each CAN node can get its own calibration messages and information from other ECUs, and block other messages by qualifying the CAN messages with priority, source or destination address. The data field of the calibration message is designed with the XCP, with CAN acting as the transport layer. The calibration sessions are setup with the event-triggered XCP driver in the master node and the responding XCP driver in the slave nodes. Mirroring calibration variables from ROM to RAM enables the user to calibrate ECUs online. The application example shows that the multi-ECU calibration system can calibrate multiple ECUs simultaneously, and the main program can also accomplish its calculation and send commands to the actuators in time. By the multi-ECU calibration system, the calibration effort and time can be reduced and the variables in ECU can get a better match with the variables of other ECUs.
文摘In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about the partial working processes of the diesel engine, the amount of heat energy, enough to make the fuel self ignite at the end of compression process at different temperatures of coolant and intake air, was calculated. Several HY20 preheating plugs were used to heat up the intake air. Meanwhile, an electronic control system based on 8 bit micro controller unit (MCS 8031) was designed to automatically control the process of heating intake air. According to the various temperatures of coolant and ambient air, one plug or two plugs can automatically be selected to heat intake air. The demo experiment validated that the total system could operate successfully and achieve the scheduled function.
基金Sponsored by the Ministerial Level Advanced Research(10660060220)
文摘A hardware-in-the-loop simulating platform is developed to avoid designing defects caused by the complicated logical structure and multiple-functional buildup of the dectronic control unit(ECU)in modem diesel engines, and to diminish potential damages on components or human exposure to dangers in R&D en- deavor. This plat-form consists of a computer installed with software Matlab/Simulink/RTW and dSPACE/ ControlDesk; a diesel engine ECU, and a dSPACE autobox which runs a real-time diesel engine model. A typical model of diesel engine with turbocharger and intercooler is presented. Based on this model our research is carried out with a real ECU to test its software control strategies. Results show that by using the diesel engine model downloaded inside, the hardware-in-the-loop platform can simulate diesel engine's working conditions and generate all kinds of sensor signals which ECU needs on a real-time basis. So the ECU control strategies can be validated and relevant parameters roughly calibrated.
文摘Today’s vehicles use electronic control units(ECU) to control engine/transmission, body and other amenities. All the vehicle performance depends on a lot of physical values and influence factors. This leads to a large number of control and regulation parameters in the ECU software. The ultimate objective of calibration work is the optimum determination of these parameters. Qualitatively excellent results can only be achieved in a shorter time by using a highly efficient calibration system. This paper provided an overview of a new calibration tool based on KWP2000 and gave an example calibration with this tool.
文摘By means of circuit simulation, hardware of electronic control unit (ECU) of high pressure common-rail electronic control fuel system for diesel engine is designed. According to the system requirements for hardware of ECU, signal-processing circuit of variable reluctance (VR) sensor, filter circuit for input signal, high voltage power circuit and driver and protection circuit of solenoid are simulated as emphases. Difficulties of wide scope of VR sensor output signal, efficiency of high voltage power and reliable and swift driver of solenoid are solved. The results of simulation show that the hardware meets the requirement of the fuel system. At the same time, circuit simulation can greatly increase quality of the design, alleviate design labor and shorten design time.
文摘The high working junction temperature of power component is the most common reason of its failure. So the thermal design is of vital importance in electronic control unit (ECU) design. By means of circuit simulation, the thermal design of ECU for electronic unit pump (EUP) fuel system is applied. The power dissipation model of each power component in the ECU is created and simulated. According to the analyses of simulation results, the factors which affect the power dissipation of components are analyzed. Then the ways for reducing the power dissipation of power components are carried out. The power dissipation of power components at different engine state is calculated and analyzed. The maximal power dissipation of each power component in all possible engine state is also carried out based on these simulations. A cooling system is designed based on these studies. The tests show that the maximum total power dissipation of ECU drops from 43.2 W to 33.84 W after these simulations and optimizations. These applications of simulations in thermal design of ECU can greatly increase the quality of the design, save the design cost and shorten design time
基金the startup research foundation of China Three Gorge University (No.0620070124)
文摘To alleviate the influence of gas compressibility on the process performance of time-pressure dispensing for electronics encapsulation,a predictive model is developed based on power-law fluid to estimate the encapsulant amount dispensed.Based on the simple and effective model,a run by run (RbR) supervisory control scheme is delivered to compensate the variation resulting from gas volume change in the syringe.Both simulation and experiment have shown that the dispensing consistency has been greatly improved with the model-based RbR control strategy developed in this paper.
文摘This paper presents a simple sliding mode control strategy used for an electronic differential system for electric vehicle with two independent wheel drives. When a vehicle drives along a curved road lane, the speed of the inner wheel has to be different from that of the outer wheel in order to prevent the vehicle from vibrating and travelling an unsteady path. Because each wheel of this electrical vehicle has independent driving force, an electrical differential system is required to replace a gear differential system. However, it is difficult to analyse the nonlinear behaviour of the differential system in relation to the speed and steering angle, as well as vehicle structure. The proposed propulsion system consists of two permanent magnet synchronous machines that ensure the drive of the two back driving wheels. The proposed control structure called independent machines for speed control allows the achievement of an electronic differential which ensures the control of the vehicle behaviour on the road. It also allows to control, independently, every driving wheel to turn at different speeds in any curve. Analysis and simulation results of the proposed system are presented in this paper.
文摘The performance of the electronic unit pump (EUP) diesel engine is studied, it will be used in the integrated powertrain and its multi parameters are controllable. Both the theoretical analysis and experiment research are taken. A control unit for the fuel quantity and timing in crankshaft domain is designed on this basis and the engine experiment test has been done. For the constant speed camshaft driving EUP system, the fuel quantity will increase as the supply angle goes up and injection timing has no effect. The control precision can reach 1°CA. The full injection timing MAP and engine peak performance curves are made successfully.
文摘A Phase-change thermal control unit( PTCU) filled with metallic phase change material( PCM) Bismuth alloy for electric devices thermal protection was developed and investigated experimentally. The PTCU filled with PCM was designed and manufactured. Resistance heating components( RCHs) produced 1 W,3 W, 5 W,7W,and 10 W for simulating heat generation of electronic devices. At various heating power levels,the performance of PTCU were tested during heating period and one duty cycle period. The experimental results show that the PTCU delays RCH reaching the maximum operating temperature. Also,a numerical model was developed to enable interpretation of experimental results and to perform parametric studies. The results confirmed that the PTCU is suitable for electric devices thermal control.
文摘This paper gives the brief view of the electronic control system of SPACE SOLAR TELESCOPE (SST), especially the On Board Data Handling unit (OBDH) on the SST which control the operation of the instrument, acquire data and make data analysis and storage. In OBDH, the Scientific Data Unit (SDU) is a special unit that requires high speed computer. In this paper gives a brief comparison of two possible choices and discuss selection of electronic parts in the space environment.
文摘This paper is concerned with the development of electronic controller for turbine POwer units. In order to increase the reliability of the POwer unit, three control loops working in the hi-backup mode have been employed. This control strategy is able to satisfy the demands of the application of the power unit to the aviation fields.
基金Sponsored by the Science and Technology Foundation of Guizhou Province,China(Grant Nos.LH[2016]7077,LH[2015]7218)the Youth Science and Technology Talents Growth Fund Program of GuiZhou Province Education Department,China(Grant No.KY[2016]166)the Innovation Group Major Program of Guizhou Province(Grant Nos.KY[2016]028,KY[2016]029,KY[2016]030)
文摘A system study of the three-dimensional normal stress for regulating electronic structure and magnetic property of Fe_2Ge is studied. The density states of Fe more than 92% contribution come from Fe 3d,the density states of Ge mainly contributed from Ge 4p and Ge 4s,and the Fe 3d spin induces the Ge 4p electron transfer. The inductive effect increases germanium electron energy,weakens the Fe spin density of states,opposes the stability of the ferromagnetic state. The magnetic moment varies from 5 to 3 μB with the stress charges from-30 to 30 GPa. The charge of Fe is negative whereas the Ge atom is positively charged,the Fe atom loses charge,the charge transfers to the Ge atom. The unevenly distributed charge forms the newoccupy state and spin polarization state in the Fe_2Ge electron structure system. The Fe is the electron donor,the total electron is transferred to Ge,but the total numbers of gain electron and total numbers of lost electron are not equal,so the Fe_2Ge electron system may have hybridization between the Fe 3d state and Ge 4p state.The magnetic of Fe_2Ge mainly comes from the unoccupied Fe 3d orbital,the Fe 3d is positive spinpolarization state and the spin-polarization strength is decreased,the Ge 4p is negative spin-polarization state and the spin-polarization strength are increased. M oreover,electrons-spin polarization is relevant to the structure parameters of the Fe_2Ge system,and controls spin-polarized electronic behavior by means of adjusting ferromagnetic.
基金Project supported by the National Key Research and Development Program of China (Grant No.2021YFA1401001)the National Natural Science Foundation of China (Grant No.62371355)。
文摘A 1-bit electronically controlled metasurface reflectarray is presented to achieve beam steering with multiple polarization manipulations. A metsurface unit cell loaded by two PIN diodes is designed. By switching the two PIN diodes between ON and OFF states, the isotropic and anisotropic reflections can be flexibly achieved. For either the isotropic reflection or the anisotropic reflection, the two operation states achieve the reflection coefficients with approximately equal magnitude and 180°out of phase, thus giving rise to the isotropic/anisotropic 1-bit metasurface unit cells. With the 1-bit unit cells, a 12-by-12 metasurface reflectarray is optimally designed and fabricated. Under either y-or x-polarized incident wave illumination, the reflectarray can achieve the co-polarized and cross-polarized beam scanning, respectively, with the peak gains of 20.08 d Bi and 17.26 d Bi within the scan range of about ±50°. With the right-handed circular polarization(RHCP) excitation, the left-handed circular polarization(LHCP) radiation with the peak gain of 16.98 d Bic can be achieved within the scan range of ±50°. Good agreement between the experimental results and the simulation results are observed for 2D beam steering and polarization manipulation capabilities.
基金the National Natural Science Foundation of China (50122155)
文摘Based on the dynamics of ABS-equipped vehicles during cornering braking, the electronic brake- force distribution (EBD) control methods of ABS-equipped vehicles during cornering braking are proposed. According to the dynamics and the tire model under tire adhesion limit, the stability acceptance criteria of vehicles during cornering braking are proposed. According to the stability acceptance criteria and the ABS control, the EBD control methods of ABS-equipped vehicles during cornering braking are implemented by adjusting the threshold values of tires slip independently. The vehicle states during cornering braking at two typical initial velocities of the vehicle are analyzed by the EBD control methods, whose results indicate the EBD control methods can improve the braking performances of the vehicle during cornering braking comparing with the ABS control.
基金Supported by National Natural Science Foundation of China(Grant Nos.51375212,61601203)Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions of China+1 种基金Key Research and Development Program of Jiangsu Province(BE2016149)Jiangsu Provincial Natural Science Foundation of China(BK20140555)
文摘The accurate control for the vehicle height and leveling adjustment system of an electronic air suspension(EAS) still is a challenging problem that has not been effectively solved in prior researches. This paper proposes a new adaptive controller to control the vehicle height and to adjust the roll and pitch angles of the vehicle body(leveling control) during the vehicle height adjustment procedures by an EAS system. A nonlinear mechanism model of the full?car vehicle height adjustment system is established to reflect the system dynamic behaviors and to derive the system optimal control law. To deal with the nonlinear characters in the vehicle height and leveling adjustment processes, the nonlinear system model is globally linearized through the state feedback method. On this basis, a fuzzy sliding mode controller(FSMC) is designed to improve the control accuracy of the vehicle height adjustment and to reduce the peak values of the roll and pitch angles of the vehicle body. To verify the effectiveness of the proposed control method more accurately, the full?car EAS system model programmed using AMESim is also given. Then, the co?simulation study of the FSMC performance can be conducted. Finally, actual vehicle tests are performed with a city bus, and the test results illustrate that the vehicle height adjustment performance is effectively guaranteed by the FSMC, and the peak values of the roll and pitch angles of the vehicle body during the vehicle height adjustment procedures are also reduced significantly. This research proposes an effective control methodology for the vehicle height and leveling adjustment system of an EAS, which provides a favorable control performance for the system.