a-C:F films are deposited by microwave electron cyclotron resonance (ECR)plasma chemical vapor deposition (CVD) using trifluoromethane (CHF3) and benzene (C6H6) as source gases at different microwave powers. The radic...a-C:F films are deposited by microwave electron cyclotron resonance (ECR)plasma chemical vapor deposition (CVD) using trifluoromethane (CHF3) and benzene (C6H6) as source gases at different microwave powers. The radicals in plasma originating from source gases dissociation are analyzed by relative irradiance measurement. The bonding configurations and binding state of a-C:F films are measured with Fourier-transformed infrared spectrometer (FTIR) and x-ray photoelectron spectroscopy (XPS). The results show that a-C:F films are mainly composed of CF radical at lower powers but of CF2 radical at higher powers. The deposition of films is related to the radicals generated in plasma and the main bonding configurations are dependent on the ratio of CF to CF2 radicals in films.展开更多
Some nonlinear behavior in electron cyclotron resonance plasma was investigated using a two-dimension hybrid-mode with self-consistent microwave absorption. The saturation,oscillations of plasma parameters (plasma den...Some nonlinear behavior in electron cyclotron resonance plasma was investigated using a two-dimension hybrid-mode with self-consistent microwave absorption. The saturation,oscillations of plasma parameters (plasma density, potential, electron temperature) versus operating conditions (pressure, power) are discussed. Our simulation results are consistent qualitatively with many experimental measurements.展开更多
Reactive ion etching is the interaction of reactive plasmas with surfaces. To obtain a detailed understanding of this process, significant properties of reactive composite low-pressure plasmas driven by electron cyclo...Reactive ion etching is the interaction of reactive plasmas with surfaces. To obtain a detailed understanding of this process, significant properties of reactive composite low-pressure plasmas driven by electron cyclotron resonance(ECR) were investigated and compared with the radial uniformity of the etch rate. The determination of the electronic properties of chlorine-and hydrogen-containing plasmas enabled the understanding of the pressure-dependent behavior of the plasma density and provided better insights into the electronic parameters of reactive etch gases. From the electrical evaluation of I(V) characteristics obtained using a Langmuir probe,plasmas of different compositions were investigated. The standard method of Druyvesteyn to derive the electron energy distribution functions by the second derivative of the I(V)characteristics was replaced by a mathematical model which has been evolved to be more robust against noise, mainly, because the first derivative of the I(V) characteristics is used. Special attention was given to the power of the energy dependence in the exponent. In particular, for plasmas that are generated by ECR with EM modes, the existence of Maxwellian distribution functions is not to be taken as a self-evident fact, but the bi-Maxwellian distribution was proven for Ar-and Kr-stabilized plasmas. In addition to the electron temperature, the global uniform discharge model has been shown to be useful for calculating the neutral gas temperature. To what extent the invasive method of using a Langmuir probe could be replaced with the noninvasive optical method of emission spectroscopy, particularly actinometry, was investigated,and the resulting data exhibited the same relative behavior as the Langmuir data. The correlation with etchrate data reveals the large chemical part of the removal process—most striking when the data is compared with etching in pure argon. Although the relative amount of the radial variation of plasma density and etch rate is approximately ?5%, the etch rate shows a slightly concave shape in contrast to the plasma density.展开更多
Aim To investigate the influence of ion density( n i) on the deposition of wurtzite GaN films on the substrate of α Al 2O 3(0001) by electron cyclotron resonance plasma. Methods Langmuir probe measure...Aim To investigate the influence of ion density( n i) on the deposition of wurtzite GaN films on the substrate of α Al 2O 3(0001) by electron cyclotron resonance plasma. Methods Langmuir probe measurement, Double crystal X ray diffraction and Hall measurement were used. Results The quality of GaN film strongly depended on its growth condition. The higher ion density resulted in a higher amount ratio of N/Ga and a lower background electron concentration of GaN film. When the GaN was prepared in the ion density of 2 0×10 11 cm -3 , the amount ratio of N/Ga was close to 1, the electron background density was 3 7×10 18 cm -3 and its full width at half magnitude(FWHM) was 16?arcmin. Conclusion The quality of GaN film can be improved by raising the plasma density.展开更多
Through diagnosing the plasma density and calculating the intensity of microwave electric field,four 10 cm electron cyclotron resonance(ECR)ion sources with different magnetic field structures are studied to reveal th...Through diagnosing the plasma density and calculating the intensity of microwave electric field,four 10 cm electron cyclotron resonance(ECR)ion sources with different magnetic field structures are studied to reveal the inside interaction between the plasma,magnetic field and microwave electric field.From the diagnosing result it can be found that the plasma density distribution is controlled by the plasma generation and electron loss volumes associated with the magnetic field and microwave power level.Based on the cold plasma hypothesis and diagnosing result,the microwave electric field intensity distribution in the plasma is calculated.The result shows that the plasma will significantly change the distribution of the microwave electric field intensity to form a bow shape.From the boundary region of the shape to the center,the electric field intensity varies from higher to lower and the diagnosed density inversely changes.If the bow and its inside lower electric field intensity region are close to the screen grid,the performance of ion beam extracting will be better.The study can provide useful information for the creating of 10 cm ECR ion source and understanding its mechanism.展开更多
Optical emission spectroscopy(OES), as a simple in situ method without disturbing the plasma, has been performed for the plasma diagnosis of a 2.45 GHz permanent magnet electron cyclotron resonance(PMECR) ion sour...Optical emission spectroscopy(OES), as a simple in situ method without disturbing the plasma, has been performed for the plasma diagnosis of a 2.45 GHz permanent magnet electron cyclotron resonance(PMECR) ion source at Peking University(PKU). A spectrum measurement platform has been set up with the quartz-chamber electron cyclotron resonance(ECR) ion source [Patent Number: ZL 201110026605.4] and experiments were carried out recently. The electron temperature and electron density inside the ECR plasma chamber have been measured with the method of line intensity ratio of noble gas. Hydrogen plasma processes inside the discharge chamber are discussed based on the diagnostic results. What is more, the superiority of the method of line intensity ratio of noble gas is indicated with a comparison to line intensity ratio of hydrogen. Details will be presented in this paper.展开更多
为比较使用不同气体工质的电子回旋共振(ECR)中和器的性能,在真空环境下,用一个电子收集板模拟离子的作用,将电子电流从ECR中和器中引出,实验研究了以氩气和氪气为工质时,ECR中和器引出电子电流的大小以及中和器的性能。实验结果表明:...为比较使用不同气体工质的电子回旋共振(ECR)中和器的性能,在真空环境下,用一个电子收集板模拟离子的作用,将电子电流从ECR中和器中引出,实验研究了以氩气和氪气为工质时,ECR中和器引出电子电流的大小以及中和器的性能。实验结果表明:以氩气为工质,ECR中和器在体积流量0.8 m L/min时,88.6 V电压可引出103.8 m A的电子电流,工质利用效率和电子损耗分别为1.278 9 W/A和194.573 W/A;以氪气为工质,ECR中和器在体积流量0.6 m L/min时,75 V电压可引出108 m A电子电流,工质利用效率和电子产生损耗分别为1.783 2W/A和176.7 W/A。以氪气为工质的中和器性能明显优于氩气,但2种工质都可以满足ECR离子源中和离子束流的需要。展开更多
利用Geobel模型对电子回旋共振离子推力器的离子源性能进行了计算,分析工质利用率与放电损耗的关系、电子温度与离子源性能的关系、离子源长度和栅极有效透明度对放电损耗和工质利用率的影响。采用Geobel模型对电子回旋共振离子推力器...利用Geobel模型对电子回旋共振离子推力器的离子源性能进行了计算,分析工质利用率与放电损耗的关系、电子温度与离子源性能的关系、离子源长度和栅极有效透明度对放电损耗和工质利用率的影响。采用Geobel模型对电子回旋共振离子推力器性能的计算结果为:20 cm ECRIT离子源在100 mm轴向长度、80%栅极有效透明度条件下,工质利用率为90%,放电损失为203 W/A;10 cm ECRIT离子源在40 mm轴向长度、80%栅极有效透明度条件下,工质利用率为86%,放电损失为300 W/A。结果表明:采用Geobel模型算法计算结果与国外文献数据的相对误差小于5%,利用该模型对电子回旋共振离子推力器离子源性能分析的方法有效、合理。展开更多
文摘a-C:F films are deposited by microwave electron cyclotron resonance (ECR)plasma chemical vapor deposition (CVD) using trifluoromethane (CHF3) and benzene (C6H6) as source gases at different microwave powers. The radicals in plasma originating from source gases dissociation are analyzed by relative irradiance measurement. The bonding configurations and binding state of a-C:F films are measured with Fourier-transformed infrared spectrometer (FTIR) and x-ray photoelectron spectroscopy (XPS). The results show that a-C:F films are mainly composed of CF radical at lower powers but of CF2 radical at higher powers. The deposition of films is related to the radicals generated in plasma and the main bonding configurations are dependent on the ratio of CF to CF2 radicals in films.
文摘Some nonlinear behavior in electron cyclotron resonance plasma was investigated using a two-dimension hybrid-mode with self-consistent microwave absorption. The saturation,oscillations of plasma parameters (plasma density, potential, electron temperature) versus operating conditions (pressure, power) are discussed. Our simulation results are consistent qualitatively with many experimental measurements.
基金the support of Deutsche Forschungsgemeinschaft,DFG#FR 1553/6-1
文摘Reactive ion etching is the interaction of reactive plasmas with surfaces. To obtain a detailed understanding of this process, significant properties of reactive composite low-pressure plasmas driven by electron cyclotron resonance(ECR) were investigated and compared with the radial uniformity of the etch rate. The determination of the electronic properties of chlorine-and hydrogen-containing plasmas enabled the understanding of the pressure-dependent behavior of the plasma density and provided better insights into the electronic parameters of reactive etch gases. From the electrical evaluation of I(V) characteristics obtained using a Langmuir probe,plasmas of different compositions were investigated. The standard method of Druyvesteyn to derive the electron energy distribution functions by the second derivative of the I(V)characteristics was replaced by a mathematical model which has been evolved to be more robust against noise, mainly, because the first derivative of the I(V) characteristics is used. Special attention was given to the power of the energy dependence in the exponent. In particular, for plasmas that are generated by ECR with EM modes, the existence of Maxwellian distribution functions is not to be taken as a self-evident fact, but the bi-Maxwellian distribution was proven for Ar-and Kr-stabilized plasmas. In addition to the electron temperature, the global uniform discharge model has been shown to be useful for calculating the neutral gas temperature. To what extent the invasive method of using a Langmuir probe could be replaced with the noninvasive optical method of emission spectroscopy, particularly actinometry, was investigated,and the resulting data exhibited the same relative behavior as the Langmuir data. The correlation with etchrate data reveals the large chemical part of the removal process—most striking when the data is compared with etching in pure argon. Although the relative amount of the radial variation of plasma density and etch rate is approximately ?5%, the etch rate shows a slightly concave shape in contrast to the plasma density.
文摘Aim To investigate the influence of ion density( n i) on the deposition of wurtzite GaN films on the substrate of α Al 2O 3(0001) by electron cyclotron resonance plasma. Methods Langmuir probe measurement, Double crystal X ray diffraction and Hall measurement were used. Results The quality of GaN film strongly depended on its growth condition. The higher ion density resulted in a higher amount ratio of N/Ga and a lower background electron concentration of GaN film. When the GaN was prepared in the ion density of 2 0×10 11 cm -3 , the amount ratio of N/Ga was close to 1, the electron background density was 3 7×10 18 cm -3 and its full width at half magnitude(FWHM) was 16?arcmin. Conclusion The quality of GaN film can be improved by raising the plasma density.
基金the National Natural Science Foundation of China(Grant No.11875222)。
文摘Through diagnosing the plasma density and calculating the intensity of microwave electric field,four 10 cm electron cyclotron resonance(ECR)ion sources with different magnetic field structures are studied to reveal the inside interaction between the plasma,magnetic field and microwave electric field.From the diagnosing result it can be found that the plasma density distribution is controlled by the plasma generation and electron loss volumes associated with the magnetic field and microwave power level.Based on the cold plasma hypothesis and diagnosing result,the microwave electric field intensity distribution in the plasma is calculated.The result shows that the plasma will significantly change the distribution of the microwave electric field intensity to form a bow shape.From the boundary region of the shape to the center,the electric field intensity varies from higher to lower and the diagnosed density inversely changes.If the bow and its inside lower electric field intensity region are close to the screen grid,the performance of ion beam extracting will be better.The study can provide useful information for the creating of 10 cm ECR ion source and understanding its mechanism.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11175009 and 11575013)
文摘Optical emission spectroscopy(OES), as a simple in situ method without disturbing the plasma, has been performed for the plasma diagnosis of a 2.45 GHz permanent magnet electron cyclotron resonance(PMECR) ion source at Peking University(PKU). A spectrum measurement platform has been set up with the quartz-chamber electron cyclotron resonance(ECR) ion source [Patent Number: ZL 201110026605.4] and experiments were carried out recently. The electron temperature and electron density inside the ECR plasma chamber have been measured with the method of line intensity ratio of noble gas. Hydrogen plasma processes inside the discharge chamber are discussed based on the diagnostic results. What is more, the superiority of the method of line intensity ratio of noble gas is indicated with a comparison to line intensity ratio of hydrogen. Details will be presented in this paper.
文摘为比较使用不同气体工质的电子回旋共振(ECR)中和器的性能,在真空环境下,用一个电子收集板模拟离子的作用,将电子电流从ECR中和器中引出,实验研究了以氩气和氪气为工质时,ECR中和器引出电子电流的大小以及中和器的性能。实验结果表明:以氩气为工质,ECR中和器在体积流量0.8 m L/min时,88.6 V电压可引出103.8 m A的电子电流,工质利用效率和电子损耗分别为1.278 9 W/A和194.573 W/A;以氪气为工质,ECR中和器在体积流量0.6 m L/min时,75 V电压可引出108 m A电子电流,工质利用效率和电子产生损耗分别为1.783 2W/A和176.7 W/A。以氪气为工质的中和器性能明显优于氩气,但2种工质都可以满足ECR离子源中和离子束流的需要。
文摘利用Geobel模型对电子回旋共振离子推力器的离子源性能进行了计算,分析工质利用率与放电损耗的关系、电子温度与离子源性能的关系、离子源长度和栅极有效透明度对放电损耗和工质利用率的影响。采用Geobel模型对电子回旋共振离子推力器性能的计算结果为:20 cm ECRIT离子源在100 mm轴向长度、80%栅极有效透明度条件下,工质利用率为90%,放电损失为203 W/A;10 cm ECRIT离子源在40 mm轴向长度、80%栅极有效透明度条件下,工质利用率为86%,放电损失为300 W/A。结果表明:采用Geobel模型算法计算结果与国外文献数据的相对误差小于5%,利用该模型对电子回旋共振离子推力器离子源性能分析的方法有效、合理。