Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is ...Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is used with this model to obtain the modified Rutherford equation with co-current and counter-current contributions.Consistent with the reported experimental results,numerical simulations have shown that the localized counter external current can only partially suppress NTM when it is far from the resonant magnetic surface.Under some circumstances,the Ohkawa mechanism dominated current drive(OKCD)by electron cyclotron waves can concurrently create both co-current and counter-current.In this instance,the minimal electron cyclotron wave power that suppresses a particular NTM was calculated by the Rutherford equation.The result is marginally less than when taking co-current alone into consideration.As a result,to suppress NTM using OKCD,one only needs to align the co-current with a greater OKCD peak well with the resonant magnetic surface.The effect of its lower counter-current does not need to be considered because the location of the counter-current deviates greatly from the resonant magnetic surface.展开更多
The optimized synergy conditions between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) with normal parameters of the EAST tokamak are studied by using the C3PO/LUKE code based on th...The optimized synergy conditions between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) with normal parameters of the EAST tokamak are studied by using the C3PO/LUKE code based on the under- standing of the synergy mechanisms so as to obtain a higher synergistic current and provide theoretical reference for the synergistic effect in the EAST experiment. The dependences of the synergistic effect on the parameters of two waves (lower hybrid wave (LHW) and electron cyclotron wave (ECW)), including the radial position of the power deposition, the power value of the LH and EC waves, and the parallel refractive indices of the LHW (Nr) are oresented and discussed.展开更多
A number of simulations of electron cyclotron current drive (ECCD) have been carried out for the China Fusion Engineering Test Reactor (CFETR) using the C3PO/LUKE code to investigate the performance and optimize schem...A number of simulations of electron cyclotron current drive (ECCD) have been carried out for the China Fusion Engineering Test Reactor (CFETR) using the C3PO/LUKE code to investigate the performance and optimize schemes of power injection for the design of the launcher.The operation ranges of the toroidal field,cutoff density,and resonance layer location are given at different source frequencies in CFETR phases Ⅰ and Ⅱ.A comparison of ECCD performance between the horizontal and top port launch is presented.ECCD efficiency (γEC) estimated for CFETR phase Ⅰ is γEC =0.21 for top port launch and γEC =0.20 for horizontal port launch.The ECCD efficiency and second-harmonic absorption is calculated at different wave frequencies (from 170 to 230 GHz) in CFETR phase Ⅱ.It is found that the highest driven efficiency is obtained at 210 GHz with the toroidal field of 6.5 T,and the second-harmonic absorption increases rapidly with the increase of frequency.展开更多
Electron cyclotron current drive (ECCD) will be applied in the EAST tokamak during its the new campaign. In order to provide theoretical predictions for relevant physical experiments, some numerical simulations of E...Electron cyclotron current drive (ECCD) will be applied in the EAST tokamak during its the new campaign. In order to provide theoretical predictions for relevant physical experiments, some numerical simulations of ECCD with the parameters of EAST have been can'ied out by using TORAY-GA code based on the understanding of ECCD mechanisms. ECCD efficiencies achieved in different plasma and electron cyclotron (EC) wave parameters are given. The dependences of ECCD characteristics on EC wave injection angle, toroidal magnetic field, plasma density, and temperature are presented and discussed.展开更多
In J-TEXT tokamak,fast electron bremsstrahlung diagnostic with 9 chords equipped with multichannel analyzer enables detailed studies of the generation and transport of fast electrons.The spatial profiles and energy sp...In J-TEXT tokamak,fast electron bremsstrahlung diagnostic with 9 chords equipped with multichannel analyzer enables detailed studies of the generation and transport of fast electrons.The spatial profiles and energy spectrum of the fast electrons have been measured in two ECCD cases with either on-axis or off-axis injection,and the profiles processed by Abel-inversion are consistent with the calculated power deposition locations.Moreover,it is observed that the energy of fast electrons increases rapidly after turning off the ECCD,which may be attributed to the acceleration by the recovered loop voltage at low electron density.展开更多
Investigation of neoclassical tearing mode and its suppression by electron cyclotron current drive(ECCD)has been carried out in HL-2 M tokamak.The current driving capability of the electron cyclotron wave is evaluated...Investigation of neoclassical tearing mode and its suppression by electron cyclotron current drive(ECCD)has been carried out in HL-2 M tokamak.The current driving capability of the electron cyclotron wave is evaluated.It is found that the deposition location can be effectively controlled by changing the poloidal angle.The validation of electron cyclotron wave heating and current driving has been demonstrated for the upper launcher port.We show that 3.0 MW and2.5 MW modulated ECCD can completely stabilize(2,1)and(3,2)NTMs,respectively.The non-modulated ECCD,radial misalignment as well as current profile broadening have deleterious effect on the NTM stabilization.The time required for suppression of(3,2)mode is shorter than that required for the suppression of(2,1)mode.Moreover,the time needed for complete stabilization at different initial island width has been quantitatively presented and analyzed.展开更多
Electron cyclotron current drive(ECCD) efficiency research is of great importance for the neoclassical tearing mode(NTM) stabilization.Improving ECCD efficiency is beneficial for the NTM stabilization and the ECCD pow...Electron cyclotron current drive(ECCD) efficiency research is of great importance for the neoclassical tearing mode(NTM) stabilization.Improving ECCD efficiency is beneficial for the NTM stabilization and the ECCD power threshold reduction.ECCD efficiency has been investigated on the J-TEXT tokamak.The electron cyclotron wave(ECW) power scan was performed to obtain the current drive efficiency.The current drive efficiency is derived to be approximately η_(0)=(0.06-0.16)×10^(19)A m^(-2)W^(-1)on the J-TEXT tokamak.The effect of the residual toroidal electric field has been included in the determination of the current drive efficiency,which will enhance the ECCD efficiency.At the plasma current of I_(p)=100 kA and electron density of n_(e)=1.5×10^(19)m^(-3),the ratio of Spitzer conductivity between omhic(OH)and ECCD phases is considered and the experimental data have been corrected.The correction results show that the current drive efficiency η_(1)caused by the fast electron hot conductivity decreases by approximately 79%.It can be estimated that the driven current is approximately 24 kA at 300 kW ECW power.展开更多
The effects of trapped electrons on off-axis lower hybrid current drive (LHCD) in tokamaks are studied, A computer code for solving the Fokker-Planck equation in a toroidal geometry is developed and employed. The co...The effects of trapped electrons on off-axis lower hybrid current drive (LHCD) in tokamaks are studied, A computer code for solving the Fokker-Planck equation in a toroidal geometry is developed and employed. The code is suitable for various auxiliary heating and current drive schemes in tokamak plasmas. The influence of the resonance regime on the current drive efficiency as well as the influence of trapped particle fraction on the current drive efficiency are emphasized. It is shown that, as an electrostatic force, the lower hybrid wave causes some of the trapped electrons to be untrapped and lose their energy, which can cut the LHCD efficiency by about 30%. The ITER scaling law is also used to estimate the trapped electron effects.展开更多
The capabilities of current drive, neoclassical tearing mode (NTM) stabilization, and sawtooth control are analyzed for the electron-cyclotron wave (ECW) system in a HL-2M tokamak. Better performance of the upper ...The capabilities of current drive, neoclassical tearing mode (NTM) stabilization, and sawtooth control are analyzed for the electron-cyclotron wave (ECW) system in a HL-2M tokamak. Better performance of the upper launcher is demonstrated in comparison with that of a dropped upper launcher, in terms of JEc/Jbs for NTM stabilization and 1ECCD/(Aptor)2 for sawtooth control. 1-MW ECW power is enough for the 3/2 NTM stabilization, and 1.8-MW ECW power is required to suppress 2/1 NTM in a single null divertor equilibrium with 1.2-MA toroidal current with the upper launcher. Optimization simulation of electron-cyclotron current drive (ECCD) is carried out for three mirrors in an equatorial port, indicating that the middle mirror has a good performance compared with the top and bottom mirrors. The results for balanced co- and counter-ECCD in an equatorial port are also presented.展开更多
The effects of trapped electrons on off-axis lower hybrid current drive (LHCD) in tokamaks are studied. The influence of the resonance regime on the current drive efficiency as well as the influence of trapped parti...The effects of trapped electrons on off-axis lower hybrid current drive (LHCD) in tokamaks are studied. The influence of the resonance regime on the current drive efficiency as well as the influence of trapped particle fraction on the current drive efficiency are emphasized.展开更多
基金Project supported by the National Key R&D Program of China(Grant Nos.2022YFE03070000 and 2022YFE03070003)the National Natural Science Foundation of China(Grant Nos.12375220 and 12075114)+3 种基金the Hunan Provincial Natural Science Foundation(Grant No.2021JJ30569)the Doctoral Initiation Fund Project of University of South China(Grant No.190XQD114)the Hunan Nuclear Fusion International Science and Technology Innovation Cooperation Base(Grant No.2018WK4009)the Hengyang Key Laboratory of Magnetic Confinement Nuclear Fusion Research(Grant No.2018KJ108)。
文摘Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is used with this model to obtain the modified Rutherford equation with co-current and counter-current contributions.Consistent with the reported experimental results,numerical simulations have shown that the localized counter external current can only partially suppress NTM when it is far from the resonant magnetic surface.Under some circumstances,the Ohkawa mechanism dominated current drive(OKCD)by electron cyclotron waves can concurrently create both co-current and counter-current.In this instance,the minimal electron cyclotron wave power that suppresses a particular NTM was calculated by the Rutherford equation.The result is marginally less than when taking co-current alone into consideration.As a result,to suppress NTM using OKCD,one only needs to align the co-current with a greater OKCD peak well with the resonant magnetic surface.The effect of its lower counter-current does not need to be considered because the location of the counter-current deviates greatly from the resonant magnetic surface.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Grant Nos.2011GB102000,2012GB103000,2013GB106001,and2015GB102003)the National Natural Science Foundation of China(Grant Nos.11175206 and 11305211)+1 种基金the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics(Grant No.11261140328)the Fundamental Research Funds for the Central Universities of China(Grant No.JZ2015HGBZ0472)
文摘The optimized synergy conditions between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) with normal parameters of the EAST tokamak are studied by using the C3PO/LUKE code based on the under- standing of the synergy mechanisms so as to obtain a higher synergistic current and provide theoretical reference for the synergistic effect in the EAST experiment. The dependences of the synergistic effect on the parameters of two waves (lower hybrid wave (LHW) and electron cyclotron wave (ECW)), including the radial position of the power deposition, the power value of the LH and EC waves, and the parallel refractive indices of the LHW (Nr) are oresented and discussed.
基金National Key R&D Program of China (Nos. 2016YFA0400600, 2016YFA0400602, 2016YFA0400603, 2017YFE0300500 and 2017YFE0300503)the National Magnetic Confinement Fusion Science Program of China (No. 2015GB102003)the National Natural Science Foundation of China (Nos. 11675214, 11775259).
文摘A number of simulations of electron cyclotron current drive (ECCD) have been carried out for the China Fusion Engineering Test Reactor (CFETR) using the C3PO/LUKE code to investigate the performance and optimize schemes of power injection for the design of the launcher.The operation ranges of the toroidal field,cutoff density,and resonance layer location are given at different source frequencies in CFETR phases Ⅰ and Ⅱ.A comparison of ECCD performance between the horizontal and top port launch is presented.ECCD efficiency (γEC) estimated for CFETR phase Ⅰ is γEC =0.21 for top port launch and γEC =0.20 for horizontal port launch.The ECCD efficiency and second-harmonic absorption is calculated at different wave frequencies (from 170 to 230 GHz) in CFETR phase Ⅱ.It is found that the highest driven efficiency is obtained at 210 GHz with the toroidal field of 6.5 T,and the second-harmonic absorption increases rapidly with the increase of frequency.
基金Project supported by the National Magnetic Confinement Fusion Science Program of China(Grant No.2011GB102000)the National Natural Science Foundation of China(Grant Nos.11175206 and 11305211)
文摘Electron cyclotron current drive (ECCD) will be applied in the EAST tokamak during its the new campaign. In order to provide theoretical predictions for relevant physical experiments, some numerical simulations of ECCD with the parameters of EAST have been can'ied out by using TORAY-GA code based on the understanding of ECCD mechanisms. ECCD efficiencies achieved in different plasma and electron cyclotron (EC) wave parameters are given. The dependences of ECCD characteristics on EC wave injection angle, toroidal magnetic field, plasma density, and temperature are presented and discussed.
基金the National Key R&D Program of China(Nos.2017YFE0302000,2018YFE0309103,2019YFE030-10004,2017YFE0300501,2018YFE0310300,2018YFE0309100)National Natural Science Foundation of China(Nos.11775089,51821005,11905077 and 11575068)the China Postdoctoral Science Foundation(No.2019M652615)。
文摘In J-TEXT tokamak,fast electron bremsstrahlung diagnostic with 9 chords equipped with multichannel analyzer enables detailed studies of the generation and transport of fast electrons.The spatial profiles and energy spectrum of the fast electrons have been measured in two ECCD cases with either on-axis or off-axis injection,and the profiles processed by Abel-inversion are consistent with the calculated power deposition locations.Moreover,it is observed that the energy of fast electrons increases rapidly after turning off the ECCD,which may be attributed to the acceleration by the recovered loop voltage at low electron density.
基金the National Key Research and Development Program of China(Grant Nos.2018YFE0303102,2018YFE0301100,and2017YFE0301702)the National Natural Science Foundation of China(Grant Nos.11905109 and 11947238)+1 种基金U.S.DOE Sci DAC ISEP,users with Excellence Program(on EAST tokamak)of Hefei Science Center CAS under(Grant No.2021HSC-UE017)the Center for Computational Science and Engineering of Southern University of Science and Technology。
文摘Investigation of neoclassical tearing mode and its suppression by electron cyclotron current drive(ECCD)has been carried out in HL-2 M tokamak.The current driving capability of the electron cyclotron wave is evaluated.It is found that the deposition location can be effectively controlled by changing the poloidal angle.The validation of electron cyclotron wave heating and current driving has been demonstrated for the upper launcher port.We show that 3.0 MW and2.5 MW modulated ECCD can completely stabilize(2,1)and(3,2)NTMs,respectively.The non-modulated ECCD,radial misalignment as well as current profile broadening have deleterious effect on the NTM stabilization.The time required for suppression of(3,2)mode is shorter than that required for the suppression of(2,1)mode.Moreover,the time needed for complete stabilization at different initial island width has been quantitatively presented and analyzed.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(No.2019YFE03010004)the National Key R&D Program ofChina(No.2018YFE0309100)National Natural Science Foundation of China(Nos.11775089,11905077,51821005)
文摘Electron cyclotron current drive(ECCD) efficiency research is of great importance for the neoclassical tearing mode(NTM) stabilization.Improving ECCD efficiency is beneficial for the NTM stabilization and the ECCD power threshold reduction.ECCD efficiency has been investigated on the J-TEXT tokamak.The electron cyclotron wave(ECW) power scan was performed to obtain the current drive efficiency.The current drive efficiency is derived to be approximately η_(0)=(0.06-0.16)×10^(19)A m^(-2)W^(-1)on the J-TEXT tokamak.The effect of the residual toroidal electric field has been included in the determination of the current drive efficiency,which will enhance the ECCD efficiency.At the plasma current of I_(p)=100 kA and electron density of n_(e)=1.5×10^(19)m^(-3),the ratio of Spitzer conductivity between omhic(OH)and ECCD phases is considered and the experimental data have been corrected.The correction results show that the current drive efficiency η_(1)caused by the fast electron hot conductivity decreases by approximately 79%.It can be estimated that the driven current is approximately 24 kA at 300 kW ECW power.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10675043, 10575031 and 10675042).
文摘The effects of trapped electrons on off-axis lower hybrid current drive (LHCD) in tokamaks are studied, A computer code for solving the Fokker-Planck equation in a toroidal geometry is developed and employed. The code is suitable for various auxiliary heating and current drive schemes in tokamak plasmas. The influence of the resonance regime on the current drive efficiency as well as the influence of trapped particle fraction on the current drive efficiency are emphasized. It is shown that, as an electrostatic force, the lower hybrid wave causes some of the trapped electrons to be untrapped and lose their energy, which can cut the LHCD efficiency by about 30%. The ITER scaling law is also used to estimate the trapped electron effects.
基金supported by the National Natural Science Foundation of China(Grant Nos.11375085,11405082,11505092,11475083,and 11375053)the National Magnetic Confinement Fusion Science Program of China(Grant Nos.2013GB104004,2013GB111000,2014GB107000,and 2014GB108002)the Natural Science Foundation of Hunan Province,China(Grant No.2015JJ4044)
文摘The capabilities of current drive, neoclassical tearing mode (NTM) stabilization, and sawtooth control are analyzed for the electron-cyclotron wave (ECW) system in a HL-2M tokamak. Better performance of the upper launcher is demonstrated in comparison with that of a dropped upper launcher, in terms of JEc/Jbs for NTM stabilization and 1ECCD/(Aptor)2 for sawtooth control. 1-MW ECW power is enough for the 3/2 NTM stabilization, and 1.8-MW ECW power is required to suppress 2/1 NTM in a single null divertor equilibrium with 1.2-MA toroidal current with the upper launcher. Optimization simulation of electron-cyclotron current drive (ECCD) is carried out for three mirrors in an equatorial port, indicating that the middle mirror has a good performance compared with the top and bottom mirrors. The results for balanced co- and counter-ECCD in an equatorial port are also presented.
基金Supported by the National Natural Science Foundation of China (10675043, 10575031 and 10675042)
文摘The effects of trapped electrons on off-axis lower hybrid current drive (LHCD) in tokamaks are studied. The influence of the resonance regime on the current drive efficiency as well as the influence of trapped particle fraction on the current drive efficiency are emphasized.