The existence of a significant electron drift instability(EDI) in the Hall thruster is considered as one of the possible causes of the abnormal increase in axial electron mobility near the outlet of the channel. In re...The existence of a significant electron drift instability(EDI) in the Hall thruster is considered as one of the possible causes of the abnormal increase in axial electron mobility near the outlet of the channel. In recent years, extensive simulation research on the characteristics of EDI has been conducted, but the excitation mechanism and growth mechanism of EDI in linear stage and nonlinear stage remain unclear. In this work, a one-dimensional PIC model in the azimuthal direction of the thruster near-exit region is established to gain further insights into the mechanism of the EDI in detail, and the effects of different types of propellants on EDI characteristics are discussed. The changes in axial electron transport caused by EDI under different types of propellants and electromagnetic field strengths are also examined. The results indicate that EDI undergoes a short linear growth phase before transitioning to the nonlinear phase and finally reaching saturation through the ion Landau damping. The EDI drives a significant ion heating in the azimuthal direction through electron–ion friction before entering the quasi-steady state, which increases the axial mobility of the electrons. Using lighter atomic weight propellant can effectively suppress the oscillation amplitude of EDI, but it will increase the linear growth rate, frequency, and phase velocity of EDI. Compared with the classical mobility, the axial electron mobility under the EDI increases by three orders of magnitude, which is consistent with experimental phenomena. The change of propellant type is insufficient to significantly change the axial electron mobility. It is also found that the collisions between electrons and neutral gasescan significantly affect the axial electron mobility under the influence of EDI, and lead the strength of the electric field to increase and the strength of the magnetic field to decrease, thereby both effectively suppressing the axial transport of electrons.展开更多
The electron swarm parameters including the density-normalized effective ionization coefficients(α-η)/N and the electron drift velocities V e are calculated for a gas mixture of CF3I with N2 and CO2 by solving the...The electron swarm parameters including the density-normalized effective ionization coefficients(α-η)/N and the electron drift velocities V e are calculated for a gas mixture of CF3I with N2 and CO2 by solving the Boltzmann equation in the condition of a steady-state Townsend(SST) experiment.The overall density-reduced electric field strength is from 100 Td to 1000 Td(1 Td = 10-17V·cm2),while the CF3I content k in the gas mixture can be varied over the range from 0% to 100%.From the variation of(αη)/N with the CF3I mixture ratio k,the limiting field strength(E/N) lim for each CF3I concentration is derived.It is found that for the mixtures with 70% CF3I,the values of(E/N) lim are essentially the same as that for pure SF 6.Additionally,the global warming potential(GWP) and the liquefaction temperature of the gas mixtures are also taken into account to evaluate the possibility of application in the gas insulation of power equipment.展开更多
Study of electron drift velocity caused by E ×B motion is done with the help of a Mach probe in a dc cylindrical magnetron sputtering system at different plasma discharge parameters like discharge voltage, gas pr...Study of electron drift velocity caused by E ×B motion is done with the help of a Mach probe in a dc cylindrical magnetron sputtering system at different plasma discharge parameters like discharge voltage, gas pressure and applied magnetic field strength. The interplay of the electron drift with the different discharge parameters has been investi- gated. Strong radial variation of the electron drift velocity is observed and is found to be maximum near the cathode and it decreases slowly with the increase of radial distance from the cathode. The sheath electric field, E measured experimentally from potential profile curve using an emissive probe is contributed to the observed radial variation of the electron drift velocity. The measured values of the drift velocities are also compared with the values from the con- ventionM theory using the experimental values of electric and magnetic fields. This study of the drift velocity variation is helpful in providing a useful insight for determining the discharge conditions and parameters for sputter deposition of thin film.展开更多
As electron temperature T<sub>e</sub> is much higher than ion temperature T<sub>i</sub>, and electron driftspeed V<sub>d</sub> is larger than the critical value V<sub>dc</s...As electron temperature T<sub>e</sub> is much higher than ion temperature T<sub>i</sub>, and electron driftspeed V<sub>d</sub> is larger than the critical value V<sub>dc</sub> of V<sub>d</sub>, the ω=KV<sub>φ</sub> mode ion acoustic wave(IAW) will be instable. Under a long wave condition (Kλ<sub>D</sub>【【1, where λ<sub>D</sub> is Deby length,K is weve number), the growing rate γ(K) of the IAW may be written展开更多
The readout electronics for a prototype soft X-ray spectrometer based on silicon drift detector(SDD),for precisely measuring the energy and arrival time of X-ray photons is presented in this paper.The system mainly co...The readout electronics for a prototype soft X-ray spectrometer based on silicon drift detector(SDD),for precisely measuring the energy and arrival time of X-ray photons is presented in this paper.The system mainly consists of two parts,i.e.,an analog electronics section(including a pre-amplifier,a signal shaper and filter,a constant fraction timing circuit,and a peak hold circuit)and a digital electronics section(including an ADC and a TDC).Test results with X-ray sources show that an energy dynamic range of 1-10 keV with an integral nonlinearity of less than 0.1%can be achieved,and the energy resolution is better than 160 eV @ 5.9 keV FWHM.Using a waveform generator,test results also indicate that time resolution of the electronics system is about 3.7 ns,which is much less than the transit time spread of SDD(<100 ns)and satisfies the requirements of future applications.展开更多
The purpose of this paper is to understand how low energy plasmaspheric electrons respond to ULF waves excited by interplanetary shocks impinging on magnetosphere. It is found that both energy and pitch angle disperse...The purpose of this paper is to understand how low energy plasmaspheric electrons respond to ULF waves excited by interplanetary shocks impinging on magnetosphere. It is found that both energy and pitch angle dispersed plasmaspheric electrons with energy of a few eV to tens of eV can be generated simultaneously by the interplanetary shock. The subsequent period of successive dispersion signatures is around 40 s and is consistent with the ULF wave period(third harmonic). By tracing back the energy and pitch angle dispersion signatures, the position of the electron injection region is found to be off-equator at around -32° in the southern hemisphere. This can be explained as the result of injected electrons being accelerated by higher harmonic ULF waves(e.g. third harmonic) which carry a larger amplitude electric field off-equator. The dispersion signatures are due to the flux modulations(or accelerations) of " local" plasmaspheric electrons rather than electrons from the ionosphere. With the observed wave-borne large electric field excited by the interplanetary shock impact, the kinetic energy can increase to a maximum of 23 percent in one bouncing cycle for plasmaspheric electrons satisfying the drift-bounce resonance condition by taking account of both the corotating drift and bounce motion of the local plasmaspheric electron.展开更多
A new long-pulse high electron temperature(Te)regime has been achieved on experimental advanced superconducting tokamak by pure radio frequency heating.In this new scenario,there are mainly two confinement states invo...A new long-pulse high electron temperature(Te)regime has been achieved on experimental advanced superconducting tokamak by pure radio frequency heating.In this new scenario,there are mainly two confinement states involving two magneto-hydrodynamic(MHD)modes,one of which is identified as m/n=1/1 kink mode(where m and n are the poloidal and toroidal mode numbers,respectively).The frequency evolution of the kink mode is investigated through the three-dimensional,toroidal,and nonlinear Hall-MHD code CLT.We firstly find that the frequency of the m/n=1/1 kink mode significantly increases during each sawtooth crash and then confirmed it through the experimental data.The simulation results indicate that the increase of the mode frequency is mainly due to the significant increase of the electron diamagnetic frequency nearby the reconnection region.We have also observed the internal transport barrier(ITB)during the m/n=1/1 kink mode.To further investigate this m/n=1/1 kink mode in this new regime,the multi-scale interactions between the m/n=1/1 kink mode and turbulence are discussed.展开更多
The soft X-ray spectroscopy, laser Thomson scattering and electron cyclotron emission ( ECE ) are usually adopted for electron temperature measurement in fusion research of magnetic confinement. The particular soft ...The soft X-ray spectroscopy, laser Thomson scattering and electron cyclotron emission ( ECE ) are usually adopted for electron temperature measurement in fusion research of magnetic confinement. The particular soft X-ray spectroscopy has the very good spatial-temporal resolution and smaller measuring error than laser Thomson scattering, a close spatial-temporal resolution to ECE, absolute measurement ability, and smaller influence by suprathermal and runaway electrons than ECE.展开更多
The mechanical angular momentum and magnetic moment of the electron and proton spin have been calculated semiclassically with the aid of the uncertainty principle for energy and time. The spin effects of both kinds of...The mechanical angular momentum and magnetic moment of the electron and proton spin have been calculated semiclassically with the aid of the uncertainty principle for energy and time. The spin effects of both kinds of the elementary particles can be expressed in terms of similar formulae. The quantization of the spin motion has been done on the basis of the old quantum theory. It gives a quantum number n = 1/2 as the index of the spin state acceptable for both the electron and proton particle. In effect of the spin existence the electron motion in the hydrogen atom can be represented as a drift motion accomplished in a combined electric and magnetic field. More than 18,000 spin oscillations accompany one drift circulation performed along the lowest orbit of the Bohr atom. The semiclassical theory developed in the paper has been applied to calculate the doublet separation of the experimentally well-examined D line entering the spectrum of the sodium atom. This separation is found to be much similar to that obtained according to the relativistic old quantum theory.展开更多
Recent ionospheric observations report anomalous total electron content (TEC) deviations prior strong earthquakes. We discuss common fetures of the pre-earthquake TEC disturbances on the basis of statistics covering 5...Recent ionospheric observations report anomalous total electron content (TEC) deviations prior strong earthquakes. We discuss common fetures of the pre-earthquake TEC disturbances on the basis of statistics covering 50 strong seismic events during 2005-2006. The F2-layer ionospheric plasma drift under action of the electric fields of seismic origin is proposed as the main reason of producing TEC anomalies. The origin of such electric fields is discussed in terms of the lithosphere-atmosphere-ionosphere coupling system. This theory is supported by numerical simulations using global Upper Atmosphere Model (UAM). UAM calculations show that the vertical electric current with the density of about 20 - 40 nA/m2 flowing between the Earth and ionosphere over an area of about 200 by 2000 km is required to produce the TEC disturbances with the amplitude of about 30% - 50% relatively to the non-disturbed conditions. Ionosphere responses on the variations of the latitudinal position, direction and configuration of the vertical electric currents have been investigated. We show that not only the vertical component of the ionospheric plasma drift but also horizontal components play an important role in producing pre-earthquake TEC disturbances.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11975062 and 11605021)the Fundamental Research Funds for the Central Universities (Grant No.3132023192)。
文摘The existence of a significant electron drift instability(EDI) in the Hall thruster is considered as one of the possible causes of the abnormal increase in axial electron mobility near the outlet of the channel. In recent years, extensive simulation research on the characteristics of EDI has been conducted, but the excitation mechanism and growth mechanism of EDI in linear stage and nonlinear stage remain unclear. In this work, a one-dimensional PIC model in the azimuthal direction of the thruster near-exit region is established to gain further insights into the mechanism of the EDI in detail, and the effects of different types of propellants on EDI characteristics are discussed. The changes in axial electron transport caused by EDI under different types of propellants and electromagnetic field strengths are also examined. The results indicate that EDI undergoes a short linear growth phase before transitioning to the nonlinear phase and finally reaching saturation through the ion Landau damping. The EDI drives a significant ion heating in the azimuthal direction through electron–ion friction before entering the quasi-steady state, which increases the axial mobility of the electrons. Using lighter atomic weight propellant can effectively suppress the oscillation amplitude of EDI, but it will increase the linear growth rate, frequency, and phase velocity of EDI. Compared with the classical mobility, the axial electron mobility under the EDI increases by three orders of magnitude, which is consistent with experimental phenomena. The change of propellant type is insufficient to significantly change the axial electron mobility. It is also found that the collisions between electrons and neutral gasescan significantly affect the axial electron mobility under the influence of EDI, and lead the strength of the electric field to increase and the strength of the magnetic field to decrease, thereby both effectively suppressing the axial transport of electrons.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51177101)
文摘The electron swarm parameters including the density-normalized effective ionization coefficients(α-η)/N and the electron drift velocities V e are calculated for a gas mixture of CF3I with N2 and CO2 by solving the Boltzmann equation in the condition of a steady-state Townsend(SST) experiment.The overall density-reduced electric field strength is from 100 Td to 1000 Td(1 Td = 10-17V·cm2),while the CF3I content k in the gas mixture can be varied over the range from 0% to 100%.From the variation of(αη)/N with the CF3I mixture ratio k,the limiting field strength(E/N) lim for each CF3I concentration is derived.It is found that for the mixtures with 70% CF3I,the values of(E/N) lim are essentially the same as that for pure SF 6.Additionally,the global warming potential(GWP) and the liquefaction temperature of the gas mixtures are also taken into account to evaluate the possibility of application in the gas insulation of power equipment.
基金Project supported by the Council of Scientific and Industrial Research-Senior Research Fellowship,Government of India grant(Award No.9/835(6)/2008/EMR-I)
文摘Study of electron drift velocity caused by E ×B motion is done with the help of a Mach probe in a dc cylindrical magnetron sputtering system at different plasma discharge parameters like discharge voltage, gas pressure and applied magnetic field strength. The interplay of the electron drift with the different discharge parameters has been investi- gated. Strong radial variation of the electron drift velocity is observed and is found to be maximum near the cathode and it decreases slowly with the increase of radial distance from the cathode. The sheath electric field, E measured experimentally from potential profile curve using an emissive probe is contributed to the observed radial variation of the electron drift velocity. The measured values of the drift velocities are also compared with the values from the con- ventionM theory using the experimental values of electric and magnetic fields. This study of the drift velocity variation is helpful in providing a useful insight for determining the discharge conditions and parameters for sputter deposition of thin film.
文摘As electron temperature T<sub>e</sub> is much higher than ion temperature T<sub>i</sub>, and electron driftspeed V<sub>d</sub> is larger than the critical value V<sub>dc</sub> of V<sub>d</sub>, the ω=KV<sub>φ</sub> mode ion acoustic wave(IAW) will be instable. Under a long wave condition (Kλ<sub>D</sub>【【1, where λ<sub>D</sub> is Deby length,K is weve number), the growing rate γ(K) of the IAW may be written
基金supported by the National Natural Science Foundation of China(Grant No.11205154)
文摘The readout electronics for a prototype soft X-ray spectrometer based on silicon drift detector(SDD),for precisely measuring the energy and arrival time of X-ray photons is presented in this paper.The system mainly consists of two parts,i.e.,an analog electronics section(including a pre-amplifier,a signal shaper and filter,a constant fraction timing circuit,and a peak hold circuit)and a digital electronics section(including an ADC and a TDC).Test results with X-ray sources show that an energy dynamic range of 1-10 keV with an integral nonlinearity of less than 0.1%can be achieved,and the energy resolution is better than 160 eV @ 5.9 keV FWHM.Using a waveform generator,test results also indicate that time resolution of the electronics system is about 3.7 ns,which is much less than the transit time spread of SDD(<100 ns)and satisfies the requirements of future applications.
基金supported by National Natural Science Foundation of China National Natural Science Foundation of China (41421003 and 41627805)
文摘The purpose of this paper is to understand how low energy plasmaspheric electrons respond to ULF waves excited by interplanetary shocks impinging on magnetosphere. It is found that both energy and pitch angle dispersed plasmaspheric electrons with energy of a few eV to tens of eV can be generated simultaneously by the interplanetary shock. The subsequent period of successive dispersion signatures is around 40 s and is consistent with the ULF wave period(third harmonic). By tracing back the energy and pitch angle dispersion signatures, the position of the electron injection region is found to be off-equator at around -32° in the southern hemisphere. This can be explained as the result of injected electrons being accelerated by higher harmonic ULF waves(e.g. third harmonic) which carry a larger amplitude electric field off-equator. The dispersion signatures are due to the flux modulations(or accelerations) of " local" plasmaspheric electrons rather than electrons from the ionosphere. With the observed wave-borne large electric field excited by the interplanetary shock impact, the kinetic energy can increase to a maximum of 23 percent in one bouncing cycle for plasmaspheric electrons satisfying the drift-bounce resonance condition by taking account of both the corotating drift and bounce motion of the local plasmaspheric electron.
基金supported by the National Magnetic Confinement Fusion Science Program of China (No. 11505226)National Natural Science Foundation of China (Nos. 11975273 and 12005185)+2 种基金the Fundamental Research Fund for Chinese Central Universities (No. 2021FZZX003-03-02)the Science Foundation of Institute of Plasma Physics, Chinese Academy of Sciences (Nos. DSJJ-202103 and DSJJ-2021-08)the National Key R&D Program of China (No. 2019YFE03010002)
文摘A new long-pulse high electron temperature(Te)regime has been achieved on experimental advanced superconducting tokamak by pure radio frequency heating.In this new scenario,there are mainly two confinement states involving two magneto-hydrodynamic(MHD)modes,one of which is identified as m/n=1/1 kink mode(where m and n are the poloidal and toroidal mode numbers,respectively).The frequency evolution of the kink mode is investigated through the three-dimensional,toroidal,and nonlinear Hall-MHD code CLT.We firstly find that the frequency of the m/n=1/1 kink mode significantly increases during each sawtooth crash and then confirmed it through the experimental data.The simulation results indicate that the increase of the mode frequency is mainly due to the significant increase of the electron diamagnetic frequency nearby the reconnection region.We have also observed the internal transport barrier(ITB)during the m/n=1/1 kink mode.To further investigate this m/n=1/1 kink mode in this new regime,the multi-scale interactions between the m/n=1/1 kink mode and turbulence are discussed.
文摘The soft X-ray spectroscopy, laser Thomson scattering and electron cyclotron emission ( ECE ) are usually adopted for electron temperature measurement in fusion research of magnetic confinement. The particular soft X-ray spectroscopy has the very good spatial-temporal resolution and smaller measuring error than laser Thomson scattering, a close spatial-temporal resolution to ECE, absolute measurement ability, and smaller influence by suprathermal and runaway electrons than ECE.
文摘The mechanical angular momentum and magnetic moment of the electron and proton spin have been calculated semiclassically with the aid of the uncertainty principle for energy and time. The spin effects of both kinds of the elementary particles can be expressed in terms of similar formulae. The quantization of the spin motion has been done on the basis of the old quantum theory. It gives a quantum number n = 1/2 as the index of the spin state acceptable for both the electron and proton particle. In effect of the spin existence the electron motion in the hydrogen atom can be represented as a drift motion accomplished in a combined electric and magnetic field. More than 18,000 spin oscillations accompany one drift circulation performed along the lowest orbit of the Bohr atom. The semiclassical theory developed in the paper has been applied to calculate the doublet separation of the experimentally well-examined D line entering the spectrum of the sodium atom. This separation is found to be much similar to that obtained according to the relativistic old quantum theory.
文摘Recent ionospheric observations report anomalous total electron content (TEC) deviations prior strong earthquakes. We discuss common fetures of the pre-earthquake TEC disturbances on the basis of statistics covering 50 strong seismic events during 2005-2006. The F2-layer ionospheric plasma drift under action of the electric fields of seismic origin is proposed as the main reason of producing TEC anomalies. The origin of such electric fields is discussed in terms of the lithosphere-atmosphere-ionosphere coupling system. This theory is supported by numerical simulations using global Upper Atmosphere Model (UAM). UAM calculations show that the vertical electric current with the density of about 20 - 40 nA/m2 flowing between the Earth and ionosphere over an area of about 200 by 2000 km is required to produce the TEC disturbances with the amplitude of about 30% - 50% relatively to the non-disturbed conditions. Ionosphere responses on the variations of the latitudinal position, direction and configuration of the vertical electric currents have been investigated. We show that not only the vertical component of the ionospheric plasma drift but also horizontal components play an important role in producing pre-earthquake TEC disturbances.