A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on e...A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on electron heating. The model is solved numerically by a finite difference method. The numerical results show that the discharge process may be divided into three stages: the growing rapidly stage, the growing slowly stage, and the steady stage. In the steady stage,the maximal electron density increases as the driving frequency increases. The results show that the discharge region has three parts: the powered electrode sheath region, the bulk plasma region and the grounded electrode sheath region. In the growing rapidly stage(at 18 μs), the results of the cycle-averaged electric field, electron temperature, electron density, and electric potentials for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are compared, respectively. Furthermore,the results of cycle-averaged electron pressure cooling, electron ohmic heating, electron heating, and electron energy loss for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are discussed, respectively. It is also found that the effect of the cycle-averaged electron pressure cooling on the electrons is to "cool" the electrons; the effect of the electron ohmic heating on the electrons is always to "heat" the electrons; the effect of the cycle-averaged electron ohmic heating on the electrons is stronger than the effect of the cycle-averaged electron pressure cooling on the electrons in the discharge region except in the regions near the electrodes. Therefore, the effect of the cycle-averaged electron heating on the electrons is to "heat" the electrons in the discharge region except in the regions near the electrodes. However, in the regions near the electrodes, the effect of the cycle-averaged electron heating on the electron is to "cool" the electrons. Finally, the space distributions of the electron pressure cooling the electron ohmic heating and the electron heating at 1/4 T, 2/4 T, 3/4 T, and 4/4 T in one RF-cycle are presented and compared.展开更多
Electron heating via lower hybrid current drive (LHCD) has been investigated in HT-7 superconducting tokamak. Experiments show that the central electron temperature Te0, the volume averaged electron temperature 〈 ...Electron heating via lower hybrid current drive (LHCD) has been investigated in HT-7 superconducting tokamak. Experiments show that the central electron temperature Te0, the volume averaged electron temperature 〈 Te 〉 and the peaking factor of the electron temperature QTe = Teo/〈 Te 〉 increase with the lower hybrid wave (LHW) power. Simultaneously the electron heating efficiency and the electron temperature as the function of the central line-averaged electron density (ne) and the plasma current (Ip) have also been investigated. The experimental results are in a good agreement with those of the classical collision theory and the LHW power deposition theory.展开更多
The electron heating characteristics of magnetic enhancement capacitively coupled argon plasmas in presence of both longitudinal and transverse uniform magnetic field have been explored through both theoretical and nu...The electron heating characteristics of magnetic enhancement capacitively coupled argon plasmas in presence of both longitudinal and transverse uniform magnetic field have been explored through both theoretical and numerical calculations.It is found that the longitudinal magnetic field can affect the heating by changing the level of the pressure heating along the longitudinal direction and that of the Ohmic heating along the direction which is perpendicular to both driving electric field and the applied transverse magnetic field,and a continuously increased longitudinal magnetic field can induce pressure heating to become dominant.Moreover,the electron temperature as well as proportion of some low energy electrons will increase if a small longitudinal magnetic field is introduced,which is attributed to the increased average electron energy.We believe that the research will provide guidance for optimizing the magnetic field configuration of some discharge systems having both transverse and longitudinal magnetic field.展开更多
Stabilization of tearing modes and neoclassical tearing modes is of great importance for tokamak operation.Electron cyclotron waves(ECWs)have been extensively used to stabilize the tearing modes with the virtue of hig...Stabilization of tearing modes and neoclassical tearing modes is of great importance for tokamak operation.Electron cyclotron waves(ECWs)have been extensively used to stabilize the tearing modes with the virtue of highly localized power deposition.Complete suppression of the m/n=2/1 tearing mode(TM)by electron cyclotron resonance heating(ECRH)has been achieved successfully on the J-TEXT tokamak.The effects of ECW deposition location and power amplitude on the 2/1 TM suppression have been investigated.It is found that the suppression is more effective when the ECW power is deposited closer to the rational surface.As the ECW power increases to approximately 230 k W,the 2/1 TM can be completely suppressed.The island rotation frequency is increased when the island width is reduced.The experimental results show that the local heating inside the magnetic island and the resulting temperature perturbation increase at the O-point of the island play dominant roles in TM suppression.As the ECW power increases,the 2/1 island is suppressed to smaller island width,and the flow shear also plays a stabilizing effect on small magnetic islands.With the stabilizing contribution of heating and flow shear,the 2/1 TM can be completely suppressed.展开更多
A power-supply system was developed for Ohmic heating(OH)to double×10^(18)the amount of change magnetic flux in the primary central solenoid(CS)on the QUEST spherical tokamak.Two power supplies are connected with...A power-supply system was developed for Ohmic heating(OH)to double×10^(18)the amount of change magnetic flux in the primary central solenoid(CS)on the QUEST spherical tokamak.Two power supplies are connected with stacks of insulated-gate bipolar transistors,and sequentially operated to generate positive and negative CS currents.This bipolar power-supply system is controlled via a field-programmable gate array,which guarantees the safety of the entire system operation.The new OH system,assisted by electron cyclotron heating,enables the stable generation of plasma currents exceeding 100 k A.Moreover,the achieved electron density over the wide range in the major radial direction exceeds the cut-off density for one of the highpower microwave sources in QUEST.This strategy yields target plasmas for future experiments with the electron Bernstein wave.展开更多
Anomalous ion heat transport is analyzed in the T-10 tokamak plasma heated with electron cyclotron resonance heating(ECRH) in second-harmonic extra-ordinary mode. Predictive modeling with empirical scaling for Ohmical...Anomalous ion heat transport is analyzed in the T-10 tokamak plasma heated with electron cyclotron resonance heating(ECRH) in second-harmonic extra-ordinary mode. Predictive modeling with empirical scaling for Ohmical heat conductivity shows that in ECRH plasmas the calculated ion temperature could be overestimated, so an increase of anomalous ion heat transport is required. To study this effect two scans are presented: over the EC resonance position and over the ECRH power. The EC resonance position varies from the high-field side to the low-field side by variation of the toroidal magnetic field. The scan over the heating power is presented with on-axis and mixed ECRH regimes. Discharges with high anomalous ion heat transport are obtained in all considered regimes. In these discharges the power balance ion heat conductivity exceeds the neoclassical level by up to 10 times. The high ion heat transport regimes are distinguished by three parameters: the ratio Te/Ti, the normalized electron density gradient R/■, and the ion–ion collisionality νii~*. The combination of high Te/Ti, high νii~*, and R/■=6-10 results in values of normalized anomalous ion heat fluxes up to 10 times higher than in the low transport scenario.展开更多
During the current flat-top phase of electron cyclotron resonance heating discharges in the HL-2A Tokamak, the behaviour of runaway electrons has been studied by means of hard x-ray detectors and neutron diagnostics. ...During the current flat-top phase of electron cyclotron resonance heating discharges in the HL-2A Tokamak, the behaviour of runaway electrons has been studied by means of hard x-ray detectors and neutron diagnostics. During electron cyclotron resonance heating, it can be found that both hard x-ray radiation intensity and neutron emission flux fall rapidly to a very low level, which suggests that runaway electrons have been suppressed by electron cyclotron resonance heating. From the set of discharges studied in the present experiments, it has also been observed that the efficiency of runaway suppression by electron cyclotron resonance heating was apparently affected by two factors: electroh cyclotron resonance heating power and duration. These results have been analysed by using a test particle model. The decrease of the toroidal electric field due to electron cyclotron resonance heating results in a rapid fall in the runaway electron energy that may lead to a suppression of runaway electrons. During electron cyclotron resonance heating with different powers and durations, the runaway electrons will experience different slowing down processes. These different decay processes are the major cause for influencing the efficiency of runaway suppression. This result is related to the safe operation of the Tokamak and may bring an effective control of runaway electrons.展开更多
Theoretical calculation and experimental results for a polarizer with sinusoidal grooves used in the electron cyclotron resonance heating (ECRH) system of the HL-2A tokamak are presented. The calculation is based on...Theoretical calculation and experimental results for a polarizer with sinusoidal grooves used in the electron cyclotron resonance heating (ECRH) system of the HL-2A tokamak are presented. The calculation is based on an integral method developed in the vector theory of diffraction gratings, and the polarization characteristics obtained with a low-power test are in good agreement with the numerical calculated results. With the polarizer assembled in a miter bend in the ECRH transmission line, pure ordinary mode (O-mode) and extraordinary mode (X-mode) polarized waves are also expected in the high-power experiment, depending on the polarizer rotation angle and the toroidal injection angle of the electron cyclotron (EC) wave beam. Second-harmonic X-mode experiments were successfully explored in HL-2A. Experimental result revealed that the electron temperature increased from 0.8 keV (Ohmic heating phase) to 1.5 keV (second X-mode heating phase).展开更多
Electron cyclotron heating on HL-2A has been simulated by TORAY-GA with a second harmonic extraordinary wave and a fundamental ordinary wave. The results show that the wave absorption of the second harmonic extraordin...Electron cyclotron heating on HL-2A has been simulated by TORAY-GA with a second harmonic extraordinary wave and a fundamental ordinary wave. The results show that the wave absorption of the second harmonic extraordinary wave is better than that of the fundamental ordinary wave. In order to understand the interaction mechanism between electrons and the two different polarization modes, the energy exchange between electrons and the two modes are theoretically analyzed, and it is found that the coupling intensity described by the Bessel function and different polarizations of the two modes are the main reasons leading to the above phenomenon. The theoretical results of this study fit well with the simulated and numerical results.展开更多
Investigation of experimental configuration for the electron Bernstein wave (EBW) heating by using the existing electron cyclotron heating (ECH) antennas on LHD was performed. By using an antenna installed in the ...Investigation of experimental configuration for the electron Bernstein wave (EBW) heating by using the existing electron cyclotron heating (ECH) antennas on LHD was performed. By using an antenna installed in the lower port, direct oblique launching of the extraordinary (X-) mode from the high magnetic field side (HFS) is available. Since the parallel component of the refractive index (NIF) varies during propagation because of the inhomogeneity of the magnetic field, NH can be zero when the launched X-mode crosses the fundamental electron cyclotron resonance (ECR) layer even NⅡ is noonzero initially. In such a condition, if the electron density is above a certain level the obliquely launched X-mode can pass the fundamental ECR layer without being damped out and can be mode-converted to EBW that is absorbed at the Doppler shifted ECR layer. By using an antenna installed in the horizontal port, oblique launching from the lower magnetic field side (LFS) toward the over-dense plasma is available. Excitation of EBW via the mode conversion process of ordinary mode(O)-extraordinary mode(X)-electron Bernstein wave (B) is expected with the O-mode launching toward an appropriate direction. The O-X-B mode conversion rate and the region of power deposition were surveyed by varying the magnetic field strength and the launching direction. The results of the survey suggest that efficient heating in the core region is difficult by using the existing antenna. Rearrangement of the final mirror of the launching antenna may be needed.展开更多
During initial studies of ECRH in the HL-1M tokamak, non-standard central MHD activities,such as saturated sawtooth, partially saturated sawtooth, double sawtooth, and the strong m = 1 bursts have been observed while ...During initial studies of ECRH in the HL-1M tokamak, non-standard central MHD activities,such as saturated sawtooth, partially saturated sawtooth, double sawtooth, and the strong m = 1 bursts have been observed while changing the heating location, the ECRH power, the plasma density. Complete suppression of sawtooth is achieved for the duration of the ECRH, when the heating power is applied on the high-field side of low-density plasma, and exceeds a threshold value of power. The m = 1 bursts riding on the ramp phase of sawtooth can only be excited when the ECRH location is near the q = 1 surface on the high field side. The conditions under which the various relaxation activities are produced or suppressed are described. Experimental results imply that the energetic electrons generated during ECRH are responsible for the modification/or stabilization/or excitation of the instability. Near the q = 1 surface, the passing electrons play the role of reducing the shear and tending to stabilize the sawtooth activity, while the barely-trapped electrons play the role of enhancing or driving an internal kink instability.展开更多
To improve the microstructure and properties of the electron beam welded joints, the vacuum or furnace whole post weld heat treatment (FWPWHT) usually should be done on it. The electron beam local post weld heat treat...To improve the microstructure and properties of the electron beam welded joints, the vacuum or furnace whole post weld heat treatment (FWPWHT) usually should be done on it. The electron beam local post weld heat treatment (EBLPWHT) is a rather new heat treatment procedure that provides the advantages of high precision, flexibility and efficiency, energy saving and higher productivity. In this paper, the microstructure, mechanical properties, fracture toughness and fatigue properties of electron beam welded joints of 30CrMnSiNi2A steel in as-welded (AW) and EBLPWHT conditions have been investigated respectively. The results show that the microstructures of different zones of joints in as-welded condition are changed by EBLPWHT procedure, in which the welds from coarse needle martensite into lath-shaped martensite; the main structures of heat affected zones (HAZ) from lath-shaped martensite into lower bainite. The properties of welded joints can be improved by the EBLPWHT in some extent, especially the fracture toughness of the welds and the fatigue crack resistance of welded joints can be sufficiently improved. However, more appropriate heat treatment parameters of the EBLPWHT have to be studied in order to increase the mechanical properties of base metal near by the HAZ.展开更多
A three-dimensional finite-element model (FEM) used for calculating electron beam (EB) welding temperature and stresses fields of thin plates of BT20 titanium has been developed in which the nonlinear thermophysical a...A three-dimensional finite-element model (FEM) used for calculating electron beam (EB) welding temperature and stresses fields of thin plates of BT20 titanium has been developed in which the nonlinear thermophysical and thermo-mechanical properties of the material has been considered. The welding temperature field, the distributions of residual stresses in as-welded (AW) and electron beam local post-weld heat treatment (EBLPWHT) conditions have been successfully simulated. The results show that: (1) In the weld center, the maximum magnitude of residual tensile stresses of BT20 thin plates of Ti alloy is equal to 60%- 70% of its yield strength σs. (2) The residual tensile stresses in weld center can be even decreased after EBLPWHT and the longitudinal tensile stresses are decreased about 50% compared to joints in AW conditions. (3) The numerical calculating results of residual stresses by using FEM are basically in agreement with the experimental results. Combined with numerical calculating results, the effects of electron beam welding and EBLPWHT on the distribution of welding residual stresses in thin plates of BT20 have been analyzed in detail.展开更多
The effects of two post-weld heat treatment processes on the microstructure and fatigue properties of the electron beam welded joints of 30CrMnSiNi2A steel were studied. Electron beam local post-weld heat treatment (E...The effects of two post-weld heat treatment processes on the microstructure and fatigue properties of the electron beam welded joints of 30CrMnSiNi2A steel were studied. Electron beam local post-weld heat treatment (EBLPWHT), in a vacuum chamber, immediately after welding and a traditional furnace whole post-weld heat treatment (FWPWHT) were accepted. The experimental results show that, after EBLPWHT, the main microstructure of weld is changed from coarse acicular martensite into lath martensite, and base metal is changed from ferrite and perlite into upper bainite and residual austenite, however the microstructures of different zones of joints in FWPWHT conditions are tempered sorbite. The fatigue crack growth rate da/dN of welds and base metal are not obviously changed among EBLPWHT, FWPWHT test and as-welded (AW) test, as the mechanical properties of materials have a certain but not large effect on the da/dN of welded joints. The resistance to near threshold fatigue crack growth data of welded joints can be largely improved by EBLPWHT and it is related to microstructure and crack closure effect.展开更多
Radiator thermal performance test equipment plays a key role in the processing of developing a new type of heat radiator and its application products.The precise of temperature controlling,temperature measuring andflo...Radiator thermal performance test equipment plays a key role in the processing of developing a new type of heat radiator and its application products.The precise of temperature controlling,temperature measuring andflow measuring are the vital factors for a radiator thermal performance test equipment.Based on the above back-ground,this paper improves the measurement and control system of radiator thermal performance test equip-ment,which improves the accuracy of the radiator thermal performance test equipment.This paper also optimizes the software and hardware system simultaneously so as to improve the precision of the auto-test system of test equipment.Theflow rate ranges from 175 kg/h to 178 kg/h under different conditions.The average is 176.5 kg/h and the deviation rates are from 1.62%to 1.97%.The heat produced under various conditions is different.The maximum is 4.3 kW and the minimum is 4.2 kW for condition 1,the maximum is 3.3 kW and the minimum is 3.2 kW for condition 2 and the maximum is 1.95 kW and the minimum is 1.89 kW for condition 3.However,the deviation rate is about 2.9%,which shows that the device has high stability and high precision.This paper studies a new electronic heat cost allocate meter test method by radiator thermal performance test equipment at the same time.This paper tests temperature changes through four measures points and gets a result appeared as a heat backup which should be avoided when using in the test of electronic heat cost allocate meter.Some experiences and references could be gained for further research in the heating system from this test and research.展开更多
By using the space-resolved spectrograph, the K-shell emission from laser-produced plasma was investigated. Electron density profiles along the normal direction of the target surface in aluminum laser-plasmas were obt...By using the space-resolved spectrograph, the K-shell emission from laser-produced plasma was investigated. Electron density profiles along the normal direction of the target surface in aluminum laser-plasmas were obtained by two different diagnostic methods and compared with the profiles from the theoretical simulation of hydrodynamics code MULTI1D. The results corroborate the feasibility to obtain the electron density above the critical surface by the diagnostic method based on the Stark-broadened wings in the intermediately coupled plasmas.展开更多
It is found that in HT-7 ohmic plasma, main energy loss comes from electron heat conduction, hence quantitative data of electron heat diffusivity is a very important issue for investigation of electron heat transporta...It is found that in HT-7 ohmic plasma, main energy loss comes from electron heat conduction, hence quantitative data of electron heat diffusivity is a very important issue for investigation of electron heat transportation behavior in different target plasmas so as to get high performance plasma. A time-to-peak method of the heat pulse propagation originating from the sawtooth activity on the soft x-ray intensity signal has been adopted to experimentally determine electron heat diffusivity XeHP on the HT-7 tokamak. Aiming to improve the signal-to-noise (S/N) ratio of the original signal to get a stable and reasonable electron heat diffusivity XeHD value, some data processing methods, including average of tens of sawteeth, is discussed. The electron heat diffusivity XeHP is larger than XePB which is determined from the balance of background plasma power. Based on variation of the measured electron heat diffusivity XeHP, performances of different high confinement plasmas are analyzed.展开更多
Possibility of the measurement of radiated waves derived from the thermally emitted electron Bernstein wave (EBW) is numerically investigated based on the assumption of the super dense core (SDC) plasma generated ...Possibility of the measurement of radiated waves derived from the thermally emitted electron Bernstein wave (EBW) is numerically investigated based on the assumption of the super dense core (SDC) plasma generated in LHD. EBW that is thermally emitted in the electron cyclotron resonance (ECR) layer may couple with the electromagnetic wave and be emitted to the vacuum via the EBW-extraordinary-ordinary (B-X-O) mode conversion process. We consider the use of one of the transmission lines for electron cyclotron heating (ECH) in LHD as a receiving system of the emission. It is derived that the waves in the fundamental cyclotron frequency range are emitted as the EBW near their upper hybrid resonance (UHR) layer outside the last close flux surface (LCFS). On the other hand, waves in the second harmonics cyclotron frequency range are emitted in the core region. It means that successful measurement of waves of the second harmonic frequency range emitted from extremely high dense core plasma with setting an aim angle for receiving indicates a possibility of the second harmonic ECH by EBW in the core region with setting the same aim angle and the same polarization for launching.展开更多
The distributions of temperature and residual stresses in thin plates of BT20titanium alloy are numerically analyzed by three-dimensional finite element software duringelectron beam welding and electron beam local pos...The distributions of temperature and residual stresses in thin plates of BT20titanium alloy are numerically analyzed by three-dimensional finite element software duringelectron beam welding and electron beam local post-weld heat treatment (EBLPWHT). Combined withnumerical calculating results, the effects of different EBLPWHT mode and parameters, including heattreating position, heating width and heating time, on the distribution of welding residual stressesare analyzed. The results show that, the residual tensile stresses in weld center can be largelydecreased when the weld is heat treated at back preface of the plate. The numerical results alsoindicated that the magnitude of the residual longitudinal stresses of the weld and the zone vicinityof the weld is decreased, and the range of the residual longitudinal stresses is increased alongwith the increase of heating width and heating time.展开更多
The tight-binding Harrison model and Green's function approach have been utilized in order to investigate the contribution of hybridized orbitals in the electronic density of states(DOS) and electronic heat capacit...The tight-binding Harrison model and Green's function approach have been utilized in order to investigate the contribution of hybridized orbitals in the electronic density of states(DOS) and electronic heat capacity(EHC) for four hydrogenated structures, including monolayer chair-like, table-like, bilayer AA- and finally AB-stacked graphene. After hydrogenation, monolayer graphene and bilayer graphene are behave as semiconducting systems owning a wide direct band gap and this means that all orbitals have several states around the Fermi level. The energy gap in DOS and Schottky anomaly in EHC curves of these structures are compared together illustrating the maximum and minimum band gaps are appear for monolayer chair-like and bilayer AA-stacked graphane, respectively. In spite of these, our findings show that the maximum and minimum values of Schottky anomaly appear for hydrogenated bilayer AA-stacked and monolayer table-like configurations, respectively.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.51172101)
文摘A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on electron heating. The model is solved numerically by a finite difference method. The numerical results show that the discharge process may be divided into three stages: the growing rapidly stage, the growing slowly stage, and the steady stage. In the steady stage,the maximal electron density increases as the driving frequency increases. The results show that the discharge region has three parts: the powered electrode sheath region, the bulk plasma region and the grounded electrode sheath region. In the growing rapidly stage(at 18 μs), the results of the cycle-averaged electric field, electron temperature, electron density, and electric potentials for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are compared, respectively. Furthermore,the results of cycle-averaged electron pressure cooling, electron ohmic heating, electron heating, and electron energy loss for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are discussed, respectively. It is also found that the effect of the cycle-averaged electron pressure cooling on the electrons is to "cool" the electrons; the effect of the electron ohmic heating on the electrons is always to "heat" the electrons; the effect of the cycle-averaged electron ohmic heating on the electrons is stronger than the effect of the cycle-averaged electron pressure cooling on the electrons in the discharge region except in the regions near the electrodes. Therefore, the effect of the cycle-averaged electron heating on the electrons is to "heat" the electrons in the discharge region except in the regions near the electrodes. However, in the regions near the electrodes, the effect of the cycle-averaged electron heating on the electron is to "cool" the electrons. Finally, the space distributions of the electron pressure cooling the electron ohmic heating and the electron heating at 1/4 T, 2/4 T, 3/4 T, and 4/4 T in one RF-cycle are presented and compared.
基金supported by National Natural Science Foundation of China (No.10235010)
文摘Electron heating via lower hybrid current drive (LHCD) has been investigated in HT-7 superconducting tokamak. Experiments show that the central electron temperature Te0, the volume averaged electron temperature 〈 Te 〉 and the peaking factor of the electron temperature QTe = Teo/〈 Te 〉 increase with the lower hybrid wave (LHW) power. Simultaneously the electron heating efficiency and the electron temperature as the function of the central line-averaged electron density (ne) and the plasma current (Ip) have also been investigated. The experimental results are in a good agreement with those of the classical collision theory and the LHW power deposition theory.
基金supported by National Natural Science Foundation of China (Nos. 11975163 and 12175160)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘The electron heating characteristics of magnetic enhancement capacitively coupled argon plasmas in presence of both longitudinal and transverse uniform magnetic field have been explored through both theoretical and numerical calculations.It is found that the longitudinal magnetic field can affect the heating by changing the level of the pressure heating along the longitudinal direction and that of the Ohmic heating along the direction which is perpendicular to both driving electric field and the applied transverse magnetic field,and a continuously increased longitudinal magnetic field can induce pressure heating to become dominant.Moreover,the electron temperature as well as proportion of some low energy electrons will increase if a small longitudinal magnetic field is introduced,which is attributed to the increased average electron energy.We believe that the research will provide guidance for optimizing the magnetic field configuration of some discharge systems having both transverse and longitudinal magnetic field.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(No.2019YFE03010004)the Hubei Provincial Natural Science Foundation of China(No.2022CFA072)National Natural Science Foundation of China(No.51821005)。
文摘Stabilization of tearing modes and neoclassical tearing modes is of great importance for tokamak operation.Electron cyclotron waves(ECWs)have been extensively used to stabilize the tearing modes with the virtue of highly localized power deposition.Complete suppression of the m/n=2/1 tearing mode(TM)by electron cyclotron resonance heating(ECRH)has been achieved successfully on the J-TEXT tokamak.The effects of ECW deposition location and power amplitude on the 2/1 TM suppression have been investigated.It is found that the suppression is more effective when the ECW power is deposited closer to the rational surface.As the ECW power increases to approximately 230 k W,the 2/1 TM can be completely suppressed.The island rotation frequency is increased when the island width is reduced.The experimental results show that the local heating inside the magnetic island and the resulting temperature perturbation increase at the O-point of the island play dominant roles in TM suppression.As the ECW power increases,the 2/1 island is suppressed to smaller island width,and the flow shear also plays a stabilizing effect on small magnetic islands.With the stabilizing contribution of heating and flow shear,the 2/1 TM can be completely suppressed.
基金supported by the NIFS Bilateral Collaboration Research Program(Nos.NIFS19-KUTR136,NIFS22KUTR169)Grant-in-Aid for Scientific Research(C)(No.21K03510)Collaborative Research Program of the RIAM in Kyushu University。
文摘A power-supply system was developed for Ohmic heating(OH)to double×10^(18)the amount of change magnetic flux in the primary central solenoid(CS)on the QUEST spherical tokamak.Two power supplies are connected with stacks of insulated-gate bipolar transistors,and sequentially operated to generate positive and negative CS currents.This bipolar power-supply system is controlled via a field-programmable gate array,which guarantees the safety of the entire system operation.The new OH system,assisted by electron cyclotron heating,enables the stable generation of plasma currents exceeding 100 k A.Moreover,the achieved electron density over the wide range in the major radial direction exceeds the cut-off density for one of the highpower microwave sources in QUEST.This strategy yields target plasmas for future experiments with the electron Bernstein wave.
文摘Anomalous ion heat transport is analyzed in the T-10 tokamak plasma heated with electron cyclotron resonance heating(ECRH) in second-harmonic extra-ordinary mode. Predictive modeling with empirical scaling for Ohmical heat conductivity shows that in ECRH plasmas the calculated ion temperature could be overestimated, so an increase of anomalous ion heat transport is required. To study this effect two scans are presented: over the EC resonance position and over the ECRH power. The EC resonance position varies from the high-field side to the low-field side by variation of the toroidal magnetic field. The scan over the heating power is presented with on-axis and mixed ECRH regimes. Discharges with high anomalous ion heat transport are obtained in all considered regimes. In these discharges the power balance ion heat conductivity exceeds the neoclassical level by up to 10 times. The high ion heat transport regimes are distinguished by three parameters: the ratio Te/Ti, the normalized electron density gradient R/■, and the ion–ion collisionality νii~*. The combination of high Te/Ti, high νii~*, and R/■=6-10 results in values of normalized anomalous ion heat fluxes up to 10 times higher than in the low transport scenario.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10675124,10775041 and 10775045)
文摘During the current flat-top phase of electron cyclotron resonance heating discharges in the HL-2A Tokamak, the behaviour of runaway electrons has been studied by means of hard x-ray detectors and neutron diagnostics. During electron cyclotron resonance heating, it can be found that both hard x-ray radiation intensity and neutron emission flux fall rapidly to a very low level, which suggests that runaway electrons have been suppressed by electron cyclotron resonance heating. From the set of discharges studied in the present experiments, it has also been observed that the efficiency of runaway suppression by electron cyclotron resonance heating was apparently affected by two factors: electroh cyclotron resonance heating power and duration. These results have been analysed by using a test particle model. The decrease of the toroidal electric field due to electron cyclotron resonance heating results in a rapid fall in the runaway electron energy that may lead to a suppression of runaway electrons. During electron cyclotron resonance heating with different powers and durations, the runaway electrons will experience different slowing down processes. These different decay processes are the major cause for influencing the efficiency of runaway suppression. This result is related to the safe operation of the Tokamak and may bring an effective control of runaway electrons.
文摘Theoretical calculation and experimental results for a polarizer with sinusoidal grooves used in the electron cyclotron resonance heating (ECRH) system of the HL-2A tokamak are presented. The calculation is based on an integral method developed in the vector theory of diffraction gratings, and the polarization characteristics obtained with a low-power test are in good agreement with the numerical calculated results. With the polarizer assembled in a miter bend in the ECRH transmission line, pure ordinary mode (O-mode) and extraordinary mode (X-mode) polarized waves are also expected in the high-power experiment, depending on the polarizer rotation angle and the toroidal injection angle of the electron cyclotron (EC) wave beam. Second-harmonic X-mode experiments were successfully explored in HL-2A. Experimental result revealed that the electron temperature increased from 0.8 keV (Ohmic heating phase) to 1.5 keV (second X-mode heating phase).
基金supported by the National Basic Research Program of China (973 Program) (No. 2010GB107003)
文摘Electron cyclotron heating on HL-2A has been simulated by TORAY-GA with a second harmonic extraordinary wave and a fundamental ordinary wave. The results show that the wave absorption of the second harmonic extraordinary wave is better than that of the fundamental ordinary wave. In order to understand the interaction mechanism between electrons and the two different polarization modes, the energy exchange between electrons and the two modes are theoretically analyzed, and it is found that the coupling intensity described by the Bessel function and different polarizations of the two modes are the main reasons leading to the above phenomenon. The theoretical results of this study fit well with the simulated and numerical results.
基金the budget codes NIFS07ULRR501-3,518,NIFS07KLRR303a grant-in-aid for scientific research of MEXT JAPAN,2008 19740347the JSPS-CAS Core-University program in the field of Plasma and Nuclear Fusion
文摘Investigation of experimental configuration for the electron Bernstein wave (EBW) heating by using the existing electron cyclotron heating (ECH) antennas on LHD was performed. By using an antenna installed in the lower port, direct oblique launching of the extraordinary (X-) mode from the high magnetic field side (HFS) is available. Since the parallel component of the refractive index (NIF) varies during propagation because of the inhomogeneity of the magnetic field, NH can be zero when the launched X-mode crosses the fundamental electron cyclotron resonance (ECR) layer even NⅡ is noonzero initially. In such a condition, if the electron density is above a certain level the obliquely launched X-mode can pass the fundamental ECR layer without being damped out and can be mode-converted to EBW that is absorbed at the Doppler shifted ECR layer. By using an antenna installed in the horizontal port, oblique launching from the lower magnetic field side (LFS) toward the over-dense plasma is available. Excitation of EBW via the mode conversion process of ordinary mode(O)-extraordinary mode(X)-electron Bernstein wave (B) is expected with the O-mode launching toward an appropriate direction. The O-X-B mode conversion rate and the region of power deposition were surveyed by varying the magnetic field strength and the launching direction. The results of the survey suggest that efficient heating in the core region is difficult by using the existing antenna. Rearrangement of the final mirror of the launching antenna may be needed.
文摘During initial studies of ECRH in the HL-1M tokamak, non-standard central MHD activities,such as saturated sawtooth, partially saturated sawtooth, double sawtooth, and the strong m = 1 bursts have been observed while changing the heating location, the ECRH power, the plasma density. Complete suppression of sawtooth is achieved for the duration of the ECRH, when the heating power is applied on the high-field side of low-density plasma, and exceeds a threshold value of power. The m = 1 bursts riding on the ramp phase of sawtooth can only be excited when the ECRH location is near the q = 1 surface on the high field side. The conditions under which the various relaxation activities are produced or suppressed are described. Experimental results imply that the energetic electrons generated during ECRH are responsible for the modification/or stabilization/or excitation of the instability. Near the q = 1 surface, the passing electrons play the role of reducing the shear and tending to stabilize the sawtooth activity, while the barely-trapped electrons play the role of enhancing or driving an internal kink instability.
文摘To improve the microstructure and properties of the electron beam welded joints, the vacuum or furnace whole post weld heat treatment (FWPWHT) usually should be done on it. The electron beam local post weld heat treatment (EBLPWHT) is a rather new heat treatment procedure that provides the advantages of high precision, flexibility and efficiency, energy saving and higher productivity. In this paper, the microstructure, mechanical properties, fracture toughness and fatigue properties of electron beam welded joints of 30CrMnSiNi2A steel in as-welded (AW) and EBLPWHT conditions have been investigated respectively. The results show that the microstructures of different zones of joints in as-welded condition are changed by EBLPWHT procedure, in which the welds from coarse needle martensite into lath-shaped martensite; the main structures of heat affected zones (HAZ) from lath-shaped martensite into lower bainite. The properties of welded joints can be improved by the EBLPWHT in some extent, especially the fracture toughness of the welds and the fatigue crack resistance of welded joints can be sufficiently improved. However, more appropriate heat treatment parameters of the EBLPWHT have to be studied in order to increase the mechanical properties of base metal near by the HAZ.
文摘A three-dimensional finite-element model (FEM) used for calculating electron beam (EB) welding temperature and stresses fields of thin plates of BT20 titanium has been developed in which the nonlinear thermophysical and thermo-mechanical properties of the material has been considered. The welding temperature field, the distributions of residual stresses in as-welded (AW) and electron beam local post-weld heat treatment (EBLPWHT) conditions have been successfully simulated. The results show that: (1) In the weld center, the maximum magnitude of residual tensile stresses of BT20 thin plates of Ti alloy is equal to 60%- 70% of its yield strength σs. (2) The residual tensile stresses in weld center can be even decreased after EBLPWHT and the longitudinal tensile stresses are decreased about 50% compared to joints in AW conditions. (3) The numerical calculating results of residual stresses by using FEM are basically in agreement with the experimental results. Combined with numerical calculating results, the effects of electron beam welding and EBLPWHT on the distribution of welding residual stresses in thin plates of BT20 have been analyzed in detail.
基金thefoundationoftheNationalDefenseTechnologyKeyLaboratory (No .99JS5 0 .3 .2JW14 0 2 )
文摘The effects of two post-weld heat treatment processes on the microstructure and fatigue properties of the electron beam welded joints of 30CrMnSiNi2A steel were studied. Electron beam local post-weld heat treatment (EBLPWHT), in a vacuum chamber, immediately after welding and a traditional furnace whole post-weld heat treatment (FWPWHT) were accepted. The experimental results show that, after EBLPWHT, the main microstructure of weld is changed from coarse acicular martensite into lath martensite, and base metal is changed from ferrite and perlite into upper bainite and residual austenite, however the microstructures of different zones of joints in FWPWHT conditions are tempered sorbite. The fatigue crack growth rate da/dN of welds and base metal are not obviously changed among EBLPWHT, FWPWHT test and as-welded (AW) test, as the mechanical properties of materials have a certain but not large effect on the da/dN of welded joints. The resistance to near threshold fatigue crack growth data of welded joints can be largely improved by EBLPWHT and it is related to microstructure and crack closure effect.
基金supported by the Tianjin Science and Technology Project(Project No.19JCTPJC44300)The Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Project No.2018KJ261)Science and Technology Program Project of Jin Nan District Tianjin(Project Nos.201805015&20190111).
文摘Radiator thermal performance test equipment plays a key role in the processing of developing a new type of heat radiator and its application products.The precise of temperature controlling,temperature measuring andflow measuring are the vital factors for a radiator thermal performance test equipment.Based on the above back-ground,this paper improves the measurement and control system of radiator thermal performance test equip-ment,which improves the accuracy of the radiator thermal performance test equipment.This paper also optimizes the software and hardware system simultaneously so as to improve the precision of the auto-test system of test equipment.Theflow rate ranges from 175 kg/h to 178 kg/h under different conditions.The average is 176.5 kg/h and the deviation rates are from 1.62%to 1.97%.The heat produced under various conditions is different.The maximum is 4.3 kW and the minimum is 4.2 kW for condition 1,the maximum is 3.3 kW and the minimum is 3.2 kW for condition 2 and the maximum is 1.95 kW and the minimum is 1.89 kW for condition 3.However,the deviation rate is about 2.9%,which shows that the device has high stability and high precision.This paper studies a new electronic heat cost allocate meter test method by radiator thermal performance test equipment at the same time.This paper tests temperature changes through four measures points and gets a result appeared as a heat backup which should be avoided when using in the test of electronic heat cost allocate meter.Some experiences and references could be gained for further research in the heating system from this test and research.
基金Key Laboratory Open Foundation of the China Academy of Engineering Physics (No. 9032), and theNational Natural Science Foundation of China (No. 10275056)
文摘By using the space-resolved spectrograph, the K-shell emission from laser-produced plasma was investigated. Electron density profiles along the normal direction of the target surface in aluminum laser-plasmas were obtained by two different diagnostic methods and compared with the profiles from the theoretical simulation of hydrodynamics code MULTI1D. The results corroborate the feasibility to obtain the electron density above the critical surface by the diagnostic method based on the Stark-broadened wings in the intermediately coupled plasmas.
基金The project supported by National Natural Science Foundation (Nos. 10375070, 10305012)and also supported partially by the core university program between China and Japan
文摘It is found that in HT-7 ohmic plasma, main energy loss comes from electron heat conduction, hence quantitative data of electron heat diffusivity is a very important issue for investigation of electron heat transportation behavior in different target plasmas so as to get high performance plasma. A time-to-peak method of the heat pulse propagation originating from the sawtooth activity on the soft x-ray intensity signal has been adopted to experimentally determine electron heat diffusivity XeHP on the HT-7 tokamak. Aiming to improve the signal-to-noise (S/N) ratio of the original signal to get a stable and reasonable electron heat diffusivity XeHD value, some data processing methods, including average of tens of sawteeth, is discussed. The electron heat diffusivity XeHP is larger than XePB which is determined from the balance of background plasma power. Based on variation of the measured electron heat diffusivity XeHP, performances of different high confinement plasmas are analyzed.
基金supported in part by the JSPS-CAS Core-University program in the field of 'Plasma and Nuclear Fusion'
文摘Possibility of the measurement of radiated waves derived from the thermally emitted electron Bernstein wave (EBW) is numerically investigated based on the assumption of the super dense core (SDC) plasma generated in LHD. EBW that is thermally emitted in the electron cyclotron resonance (ECR) layer may couple with the electromagnetic wave and be emitted to the vacuum via the EBW-extraordinary-ordinary (B-X-O) mode conversion process. We consider the use of one of the transmission lines for electron cyclotron heating (ECH) in LHD as a receiving system of the emission. It is derived that the waves in the fundamental cyclotron frequency range are emitted as the EBW near their upper hybrid resonance (UHR) layer outside the last close flux surface (LCFS). On the other hand, waves in the second harmonics cyclotron frequency range are emitted in the core region. It means that successful measurement of waves of the second harmonic frequency range emitted from extremely high dense core plasma with setting an aim angle for receiving indicates a possibility of the second harmonic ECH by EBW in the core region with setting the same aim angle and the same polarization for launching.
基金This project is supported by Foundation of National Defense Technology Key Laboratory, China (No.99JS50.3.2JW1402).
文摘The distributions of temperature and residual stresses in thin plates of BT20titanium alloy are numerically analyzed by three-dimensional finite element software duringelectron beam welding and electron beam local post-weld heat treatment (EBLPWHT). Combined withnumerical calculating results, the effects of different EBLPWHT mode and parameters, including heattreating position, heating width and heating time, on the distribution of welding residual stressesare analyzed. The results show that, the residual tensile stresses in weld center can be largelydecreased when the weld is heat treated at back preface of the plate. The numerical results alsoindicated that the magnitude of the residual longitudinal stresses of the weld and the zone vicinityof the weld is decreased, and the range of the residual longitudinal stresses is increased alongwith the increase of heating width and heating time.
文摘The tight-binding Harrison model and Green's function approach have been utilized in order to investigate the contribution of hybridized orbitals in the electronic density of states(DOS) and electronic heat capacity(EHC) for four hydrogenated structures, including monolayer chair-like, table-like, bilayer AA- and finally AB-stacked graphene. After hydrogenation, monolayer graphene and bilayer graphene are behave as semiconducting systems owning a wide direct band gap and this means that all orbitals have several states around the Fermi level. The energy gap in DOS and Schottky anomaly in EHC curves of these structures are compared together illustrating the maximum and minimum band gaps are appear for monolayer chair-like and bilayer AA-stacked graphane, respectively. In spite of these, our findings show that the maximum and minimum values of Schottky anomaly appear for hydrogenated bilayer AA-stacked and monolayer table-like configurations, respectively.