A novel Smith-Purcell (S-P) free electron laser composed of an electron gun, a semi-elliptical resonator, a metallic reflecting grating and a collector, is presented for the first time. This paper studies the charac...A novel Smith-Purcell (S-P) free electron laser composed of an electron gun, a semi-elliptical resonator, a metallic reflecting grating and a collector, is presented for the first time. This paper studies the characteristics of this device by theoretical analysis and particle-in-cell simulation method. Results indicate that tunable coherent S-P radiation with a high output peak power at millimeter wavelengths can be generated by adjusting the length of the grating period, or adjusting the voltage of the electron beam. The present scheme has the following advantages: the semi-elliptical resonator can reflect all radiation with the emission angle {? and random azimuthal angles, back onto the electron beam with same-phase and causes the electrons to be modulated, so the output power and efficiency are improved.展开更多
The Shanghai soft X-ray free-electron laser(SXFEL)user facility project started in 2016 and is expected to be open to users by 2022.It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstation...The Shanghai soft X-ray free-electron laser(SXFEL)user facility project started in 2016 and is expected to be open to users by 2022.It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstations covering a range of 100–620 eV for ultrafast X-ray science.Two undulator lines are designed and constructed,based on different lasing modes:self-amplified spontaneous emission and echo-enabled harmonic generation.The coherent scattering and imaging(CSI)endstation is the first of five endstations to be commissioned online.It focuses on high-resolution single-shot imaging and the study of ultrafast dynamic processes using coherent forward scattering techniques.Both the single-shot holograms and coherent diffraction patterns were recorded and reconstructed for nanoscale imaging,indicating the excellent coherence and high peak power of the SXFEL and the possibility of‘‘diffraction before destruction’’experiments at the CSI endstation.In this study,we report the first commissioning results of the CSI endstation.展开更多
Irregular phase-space orbits of the electrons are harmful to the electron-beam transport quality and hence deteriorate the performance of a free-electron laser (FEL). In previous literature, it was demonstrated that...Irregular phase-space orbits of the electrons are harmful to the electron-beam transport quality and hence deteriorate the performance of a free-electron laser (FEL). In previous literature, it was demonstrated that the irregularity of the electron phase-space orbits could be caused in several ways, such as varying the wiggler amplitude and inducing sidebands. Based on a Hamiltonian model with a set of self-consistent differential equations, it is shown in this paper that the electron- beam normalized plasma frequency functions not only couple the electron motion with the FEL wave, which results in the evolution of the FEL wave field and a possible power saturation at a large beam current, but also cause the irregularity of the electron phase-space orbits when the normalized plasma frequency has a sufficiently large value, even if the initial energy of the electron is equal to the synchronous energy or the FEL wave does not reach power saturation.展开更多
Photodissociation of H2S in the VUV region plays an important role in the atmospheric chemistry and interstellar chemistry.To date,however,few studies have been focused on this topic.In this article,we have described ...Photodissociation of H2S in the VUV region plays an important role in the atmospheric chemistry and interstellar chemistry.To date,however,few studies have been focused on this topic.In this article,we have described a laser dispersion method applied in the apparatus combining the high-n H atom Rydberg tagging time-of-flight technique with the vacuum ultraviolet free electron laser(VUV FEL).The Lyman-αlaser beam(121.6 nm)used in the H-atom detection was generated by the difference frequency four-wave mixing schemes in a Kr/Ar gas cell.After passing through an off-axis biconvex LiF lens,the 121.6 nm beam was dispersed from the 212.6 nm and 845 nm beams due to the different deflection angles experienced by these laser beams at the surfaces of the biconvex lens.This method can eliminate the background signal from the 212.6 nm photolysis.Combined with the VUV FEL,photodissociation of H2S at 122.95 nm was studied successfully.The TOF spectrum was measured and the derived total kinetic energy release spectrum was displayed.The results suggest that the experimental setup is a powerful tool for investigating photodissociation dynamics of molecules in the VUV region which involves the H-atom elimination processes.展开更多
A theory for a two-stream free-electron laser (FEL) with an electromagnetic wiggler (EMW) and axial guide magnetic field is developed. In the analysis, the effects of self-fields are taken into account. The growth...A theory for a two-stream free-electron laser (FEL) with an electromagnetic wiggler (EMW) and axial guide magnetic field is developed. In the analysis, the effects of self-fields are taken into account. The growth rate is derived. The characteristics of the growth rate are studied numerically. The dependence of the normalized wave number, which corresponds to the maximum growth rate, on the cyclotron frequency is presented. The comparisons between the normalized maximum growth rate and its corresponding wave number normalized by employing the axial magnetic field, for the cases with and without self-fields in the two-stream FEL are studied numerically.展开更多
Amplification of an electromagnetic wave by a free electron laser (FEL) with a helical wiggler and an ion channel with a periodically varying ion density is examined. The relativistic equation of motion for a single...Amplification of an electromagnetic wave by a free electron laser (FEL) with a helical wiggler and an ion channel with a periodically varying ion density is examined. The relativistic equation of motion for a single electron in the combined wiggler and the periodic ionbchannel fields is solved and the classes of possible trajectories in this configuration are discussed. The gain equation for the FEL in the low-gain-per-pass lirnit is obtained by adding the effect of the periodic ion channel. Numerical calculation is employed to analyse the gain induced by the effects of the non-uniform ion density. The variation of gain with ion-channel density is demonstrated. It is shown that there is a gain enhancement for group I orbits in the presence of a non-uniform ion-channel but not in a uniform one. It is also shown that periodic ion-channel guiding is used to reach the maximum peak gain in a low ion-channel frequency (low ion density).展开更多
Spectroscopic characterization of clusters is crucial to understanding the structures and reaction mechanisms at the microscopic level,but it has been proven to be a grand challenge for neutral clusters because the ab...Spectroscopic characterization of clusters is crucial to understanding the structures and reaction mechanisms at the microscopic level,but it has been proven to be a grand challenge for neutral clusters because the absence of a charge makes it di伍cult for the size selection and detection.Infrared(IR)spectroscopy based on threshold photoionization using a tunable vacuum ultraviolet free electron laser(VUV-FEL)has recently been developed in the lab.The IR-VUV depletion and IR+VUV enhancement spectroscopic techniques open new avenues for size-selected IR spectroscopies of a large variety of neutral clusters without confinement(i.e.,an ultraviolet chromophore,a messenger tag,or a host matrix).The spectroscopic principles have been demonstrated by investigations of some neutral water clusters and some metal carbonyls.Here,the spectroscopic principles and their applications for neutral clusters are reviewed.展开更多
Cherenkov free electron laser(CFEL) is simulated numerically by using the single particle method to optimize the electron beam. The electron beam is assumed to be moving near the surface of a flat dielectric slab alon...Cherenkov free electron laser(CFEL) is simulated numerically by using the single particle method to optimize the electron beam. The electron beam is assumed to be moving near the surface of a flat dielectric slab along a growing radiation. The set of coupled nonlinear differential equations of motion is solved to study the electron dynamics. For three sets of parameters, in high power CFEL, it is found that an axial magnetic field is always necessary to keep the electron beam in the interaction region and its optimal strength is reported for each case. At the injection point, the electron beam’s distance above the dielectric surface is kept at a minimum value so that the electrons neither hit the dielectric nor move away from it to the weaker radiation fields and out of the interaction region. The optimal electron beam radius and current are thereby calculated. This analysis is in agreement with two previous numerical studies for a cylindrical waveguide but is at odds with analytical treatments of a flat dielectric that does not use an axial magnetic field. This is backed by an interesting physical reasoning.展开更多
A theory of a two-stream flee-electron laser in a combined electromagnetic wiggler (EMW) is developed, in which we use an axial-guide magnetic field and take into account the effects of the self-fields. The electron...A theory of a two-stream flee-electron laser in a combined electromagnetic wiggler (EMW) is developed, in which we use an axial-guide magnetic field and take into account the effects of the self-fields. The electron trajectories and the small signal gain are derived. The stability of the trajectories, the characteristics of the linear-gain, and the normalised maximum gain are studied numerically. The results show that there are nine stable groups of orbits in the presence of self-fields instead of seven groups reported in the absence of the self-field. It is also shown that the normalised gains of four groups of the orbits are decreasing and those for the rest of them are increasing with growing J20. Furthermore, it is found that the two-stream laser with seff-field enhances the maximum gain in comparison with the single stream case.展开更多
A theory for the two-stream free-electron laser with an electromagnetic wiggler (EMW) and an ion channel guiding is developed. In the analysis, the effects of self-fields have been taken into account. The electron t...A theory for the two-stream free-electron laser with an electromagnetic wiggler (EMW) and an ion channel guiding is developed. In the analysis, the effects of self-fields have been taken into account. The electron trajectories and the small signal gain are derived. The stability of the trajectories, the characteristics of the linear gain and the normalized maximum gain are studied numerically. The dependence of the normalized frequency ω corresponding to the maximum gain on the ion-channel frequency is presented. The results show that there are seven groups of orbits in the presence of the self-fields, which are similar to those reported in the absence of the self-fields. It is also shown that the normalized gains of 2 groups decrease while the rest increase with the increasing normalized ion-channel frequency. Furthermore, it is found that the two-stream instability and the self-field lead to a decrease in the maximum gain except for group 4.展开更多
A theory for the two-stream free-electron laser(TSFEL) with a helical wiggler and an axial guide magnetic field is developed.In the analysis,the effects of self-fields are taken into account.An analysis of the two-s...A theory for the two-stream free-electron laser(TSFEL) with a helical wiggler and an axial guide magnetic field is developed.In the analysis,the effects of self-fields are taken into account.An analysis of the two-stream steady-state electron trajectories is given by solving the equation of motion.Numerical calculations show that there are seven groups of orbits in the presence of self-fields instead of two groups reported in the absence of self-fields.The stability of the trajectories is studied numerically.展开更多
A nonlinear and non-averaged model of a two-beam free-electron laser (FEL) wiggler that is tapered nonlinearly in the absence of slippage is presented. The two beams are assumed to have different energies, and the f...A nonlinear and non-averaged model of a two-beam free-electron laser (FEL) wiggler that is tapered nonlinearly in the absence of slippage is presented. The two beams are assumed to have different energies, and the fundamental resonance of the higher energy beam is at the third harmonic of the lower energy beam. By using Maxwell's equations and the full Lorentz force equation of motion for the electron beams, coupled differential equations are derived and solved numerically by the fourth-order Runge-Kutta method. The amplitude of the wiggler field is assumed to decrease nonlinearly when the saturation of the third harmonic occurs. By simulation, the optimum starting point of the tapering and the slopes for reducing the wiggler amplitude are found. This technique can be applied to substantially improve the efficiency of the two-beam FEL in the XUV and X-ray regions. The effect of tapering on the dynamical stability of the fast electron beam is also studied.展开更多
A three-dimensional simulation of a steady-state amplifier model of a long-wavelength free-electron laser (FEL) with realizable helical wiggler and ion-channel guiding is presented. The set of coupled nonlinear diff...A three-dimensional simulation of a steady-state amplifier model of a long-wavelength free-electron laser (FEL) with realizable helical wiggler and ion-channel guiding is presented. The set of coupled nonlinear differential equations for electron orbits and fields of TE 11 mode in a cylindrical waveguide are solved numerically by the Runge–Kutta algorithm with averages calculated by the Gaussian quadrature technique. Self-fields and space-charge effects are neglected, and the electron beam is assumed to be cold and slippage is ignored. The parameters correspond to the Compton regime. Evolution of the radiation power and growth rate along the wiggler is studied. Ion-channel density is chosen to obtain optimum efficiency. Simulations are preformed for the FEL operating in the neighborhood of 35 GHz and 16.5 GHz for the electron beam energies of 250 keV and 400 keV, respectively. The result of the saturated efficiency was found to be in good agreement with the simple estimation based on the phase-trapping model.展开更多
The theory for the two-stream free electron laser (FEL) consisting of a relativistic electron beam transporting along the axis of a helical wiggler in the presence of an axial guiding magnetic field is proposed and ...The theory for the two-stream free electron laser (FEL) consisting of a relativistic electron beam transporting along the axis of a helical wiggler in the presence of an axial guiding magnetic field is proposed and investigated. In the analysis, the effects of self-fields are taken into account. The electron trajectories and the small signal gain are derived. The characteristics of the linear-gain and the normalized maximum gain are studied numerically. The results show that there are seven stable groups of orbits in the presence of self-fields instead of two groups reported in the absence of the self-fields. It is also shown that the normalized gains of three groups decrease while the rest increase with the increasing of normalized cyclotron frequency g20. Furthermore, it is found that the two-stream instability and the self-field lead to a decrease in the maximum gain except for group 3. The results show that the normalized maximum gain is enhanced in comparison with that of the single stream.展开更多
The effects of corrugated ion channels on electron trajectories and spatial growth rate for a free-electron laser with a one-dimensional helical wiggler have been investigated. Analysis of the steady-state electron tr...The effects of corrugated ion channels on electron trajectories and spatial growth rate for a free-electron laser with a one-dimensional helical wiggler have been investigated. Analysis of the steady-state electron trajectories is performed by solving the equations of motion. Our results show that the presence of a corrugated channel shifts the resonance frequency to smaller values of ion channel frequency. The sixth-order dispersion equation describing the coupling between the electrostatic beam mode and the electromagnetic mode has also been derived. The dispersion relation characteristic is analyzed in detail by numerical solution. Results show that the growth rate of instability in the presence of corrugated ion channels can be greatly enhanced relative to the case of an uniform ion channel.展开更多
The effects of self-fields on electron trajectories and gain in planar wiggler free-electron lasers with two-stream and ion-channel guiding are investigated. An analysis of the two-stream quasi-steady-state electron t...The effects of self-fields on electron trajectories and gain in planar wiggler free-electron lasers with two-stream and ion-channel guiding are investigated. An analysis of the two-stream quasi-steady-state electron trajectories is given by solving the equation of motion in the presence of ion-channel guiding and the planar wiggler. The electron trajectories and the gain are derived. The stability of the trajectories, the characteristics of the linear gain, and the normalized maximum gain are studied numerically. The numerical calculations show that there are eight group trajectories rather than the two groups reported in the absence of the self-fields. It is also shown that the normalized gain group seven (G7) decreases while the rest increases with the increase in normalized ion-channel frequency. The two-stream instability and the self-field lead to a decrease in the maximum gain, except for G7.展开更多
The theory for a two-stream free electron laser (FEL) consisting of a relativistic electron beam transported alongthe axis of a planar wiggler in the presence of an axial guiding magnetic field is proposed and inves...The theory for a two-stream free electron laser (FEL) consisting of a relativistic electron beam transported alongthe axis of a planar wiggler in the presence of an axial guiding magnetic field is proposed and investigated. The electron trajectories and the small signal gain are derived. The characteristic of the linear gain and the normalized maximum gain are studied numerically. The result shows that the normalized maximum gain is considerably enhanced in comparison with that of the single stream. The effect of the difference between the energies of the two beams in this configuration of FEL is also considered, and we find that the gain is affected by the energy differences between groups 1 and 2.展开更多
Generation of intense, fully coherent radiation with wide spectral coverage has been a long-standing challenge for laser technologies. Several techniques have been developed in recent years to extend the spectral cove...Generation of intense, fully coherent radiation with wide spectral coverage has been a long-standing challenge for laser technologies. Several techniques have been developed in recent years to extend the spectral coverage in optical physics, but none of them hold the potential to produce X-ray laser pulses with very high-peak power. Urgent demands for intense X-ray light sources have prompted the development of free-electron lasers(FELs), which have been proved to be very useful tools in many scientific areas. In this paper, we give an overview of the basic principle of FELs, techniques for realizing fully coherent FELs, and the development of fully coherent FEL facilities in China.展开更多
In this article, we present the promise of a new method generating double electron pulses in picosecondscale pulse length and tunable interpulse spacing at several picoseconds. This has witnessed an impressive potenti...In this article, we present the promise of a new method generating double electron pulses in picosecondscale pulse length and tunable interpulse spacing at several picoseconds. This has witnessed an impressive potential of application in pump–probe techniques, two-color X-ray free electron laser, high-gradient witness bunch acceleration in a plasma, etc. Three-dimensional simulations are carried out to analyze the dynamic of the electron beam in a linear accelerator. Comparisons are made between the new method and existing ways.展开更多
Quantum electrodynamics in a laser is formulated, in which the electron–laser interaction is exactly considered, while the interaction of an electron and a single photon is considered by perturbation. The formulation...Quantum electrodynamics in a laser is formulated, in which the electron–laser interaction is exactly considered, while the interaction of an electron and a single photon is considered by perturbation. The formulation is applied to the electron– laser collisions. The effect of coherence between photons in the laser is therefore fully considered in these collisions. The possibility of γ-ray laser generation by use of this kind of collision is discussed.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 60871047)the Natural Science Foundation of Liaocheng University of China (Grant No. X0810018)
文摘A novel Smith-Purcell (S-P) free electron laser composed of an electron gun, a semi-elliptical resonator, a metallic reflecting grating and a collector, is presented for the first time. This paper studies the characteristics of this device by theoretical analysis and particle-in-cell simulation method. Results indicate that tunable coherent S-P radiation with a high output peak power at millimeter wavelengths can be generated by adjusting the length of the grating period, or adjusting the voltage of the electron beam. The present scheme has the following advantages: the semi-elliptical resonator can reflect all radiation with the emission angle {? and random azimuthal angles, back onto the electron beam with same-phase and causes the electrons to be modulated, so the output power and efficiency are improved.
基金the Shanghai Soft X-ray Free-Electron Laser Facility beamline projectionfunded by the Major State Basic Research Development Program of China(No.2017YFA0504802)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 37040303)National Natural Science Foundation of China(No.21727817).
文摘The Shanghai soft X-ray free-electron laser(SXFEL)user facility project started in 2016 and is expected to be open to users by 2022.It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstations covering a range of 100–620 eV for ultrafast X-ray science.Two undulator lines are designed and constructed,based on different lasing modes:self-amplified spontaneous emission and echo-enabled harmonic generation.The coherent scattering and imaging(CSI)endstation is the first of five endstations to be commissioned online.It focuses on high-resolution single-shot imaging and the study of ultrafast dynamic processes using coherent forward scattering techniques.Both the single-shot holograms and coherent diffraction patterns were recorded and reconstructed for nanoscale imaging,indicating the excellent coherence and high peak power of the SXFEL and the possibility of‘‘diffraction before destruction’’experiments at the CSI endstation.In this study,we report the first commissioning results of the CSI endstation.
基金Project supported by the Science Foundation of Department of Education of Sichuan Province,China (Grant No.12233454)the Youth Foundation of Department of Education of Sichuan Province,China (Grant No.10ZB080)the Xihua University Foundation,China (Grant No.Z0913306)
文摘Irregular phase-space orbits of the electrons are harmful to the electron-beam transport quality and hence deteriorate the performance of a free-electron laser (FEL). In previous literature, it was demonstrated that the irregularity of the electron phase-space orbits could be caused in several ways, such as varying the wiggler amplitude and inducing sidebands. Based on a Hamiltonian model with a set of self-consistent differential equations, it is shown in this paper that the electron- beam normalized plasma frequency functions not only couple the electron motion with the FEL wave, which results in the evolution of the FEL wave field and a possible power saturation at a large beam current, but also cause the irregularity of the electron phase-space orbits when the normalized plasma frequency has a sufficiently large value, even if the initial energy of the electron is equal to the synchronous energy or the FEL wave does not reach power saturation.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB17000000)the National Natural Science Foundation of China (NSFC Center for Chemical Dynamics (No.21688102)+4 种基金the National Natural Science Foundation of China (No.21673232, No.21873099, No.21922306)the International Partnership Program of Chinese Academy of Sci-ences (No.121421KYSB20170012)supported by the National Natural Science Foundation of China (No.21973010)supported by the National Natural Science Foundation of China (No.21773236)supported by the Natural Science Research Project of Education Department of Anhui Province (No.KJ2019A0521).
文摘Photodissociation of H2S in the VUV region plays an important role in the atmospheric chemistry and interstellar chemistry.To date,however,few studies have been focused on this topic.In this article,we have described a laser dispersion method applied in the apparatus combining the high-n H atom Rydberg tagging time-of-flight technique with the vacuum ultraviolet free electron laser(VUV FEL).The Lyman-αlaser beam(121.6 nm)used in the H-atom detection was generated by the difference frequency four-wave mixing schemes in a Kr/Ar gas cell.After passing through an off-axis biconvex LiF lens,the 121.6 nm beam was dispersed from the 212.6 nm and 845 nm beams due to the different deflection angles experienced by these laser beams at the surfaces of the biconvex lens.This method can eliminate the background signal from the 212.6 nm photolysis.Combined with the VUV FEL,photodissociation of H2S at 122.95 nm was studied successfully.The TOF spectrum was measured and the derived total kinetic energy release spectrum was displayed.The results suggest that the experimental setup is a powerful tool for investigating photodissociation dynamics of molecules in the VUV region which involves the H-atom elimination processes.
文摘A theory for a two-stream free-electron laser (FEL) with an electromagnetic wiggler (EMW) and axial guide magnetic field is developed. In the analysis, the effects of self-fields are taken into account. The growth rate is derived. The characteristics of the growth rate are studied numerically. The dependence of the normalized wave number, which corresponds to the maximum growth rate, on the cyclotron frequency is presented. The comparisons between the normalized maximum growth rate and its corresponding wave number normalized by employing the axial magnetic field, for the cases with and without self-fields in the two-stream FEL are studied numerically.
文摘Amplification of an electromagnetic wave by a free electron laser (FEL) with a helical wiggler and an ion channel with a periodically varying ion density is examined. The relativistic equation of motion for a single electron in the combined wiggler and the periodic ionbchannel fields is solved and the classes of possible trajectories in this configuration are discussed. The gain equation for the FEL in the low-gain-per-pass lirnit is obtained by adding the effect of the periodic ion channel. Numerical calculation is employed to analyse the gain induced by the effects of the non-uniform ion density. The variation of gain with ion-channel density is demonstrated. It is shown that there is a gain enhancement for group I orbits in the presence of a non-uniform ion-channel but not in a uniform one. It is also shown that periodic ion-channel guiding is used to reach the maximum peak gain in a low ion-channel frequency (low ion density).
基金This work was supported by the National Natural Science Foundation of China(No.92061203 and No.21688102)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB17000000)+3 种基金International Partnership Program of Chinese Academy of Sciences(121421KYSB20170012)Chinese Academy of Sciences(GJJSTD20190002)K.C.Wong Education Foundation(GJTD-2018-06)Dalian Institute of Chemical Physics(DICP DCLS201702).
文摘Spectroscopic characterization of clusters is crucial to understanding the structures and reaction mechanisms at the microscopic level,but it has been proven to be a grand challenge for neutral clusters because the absence of a charge makes it di伍cult for the size selection and detection.Infrared(IR)spectroscopy based on threshold photoionization using a tunable vacuum ultraviolet free electron laser(VUV-FEL)has recently been developed in the lab.The IR-VUV depletion and IR+VUV enhancement spectroscopic techniques open new avenues for size-selected IR spectroscopies of a large variety of neutral clusters without confinement(i.e.,an ultraviolet chromophore,a messenger tag,or a host matrix).The spectroscopic principles have been demonstrated by investigations of some neutral water clusters and some metal carbonyls.Here,the spectroscopic principles and their applications for neutral clusters are reviewed.
文摘Cherenkov free electron laser(CFEL) is simulated numerically by using the single particle method to optimize the electron beam. The electron beam is assumed to be moving near the surface of a flat dielectric slab along a growing radiation. The set of coupled nonlinear differential equations of motion is solved to study the electron dynamics. For three sets of parameters, in high power CFEL, it is found that an axial magnetic field is always necessary to keep the electron beam in the interaction region and its optimal strength is reported for each case. At the injection point, the electron beam’s distance above the dielectric surface is kept at a minimum value so that the electrons neither hit the dielectric nor move away from it to the weaker radiation fields and out of the interaction region. The optimal electron beam radius and current are thereby calculated. This analysis is in agreement with two previous numerical studies for a cylindrical waveguide but is at odds with analytical treatments of a flat dielectric that does not use an axial magnetic field. This is backed by an interesting physical reasoning.
文摘A theory of a two-stream flee-electron laser in a combined electromagnetic wiggler (EMW) is developed, in which we use an axial-guide magnetic field and take into account the effects of the self-fields. The electron trajectories and the small signal gain are derived. The stability of the trajectories, the characteristics of the linear-gain, and the normalised maximum gain are studied numerically. The results show that there are nine stable groups of orbits in the presence of self-fields instead of seven groups reported in the absence of the self-field. It is also shown that the normalised gains of four groups of the orbits are decreasing and those for the rest of them are increasing with growing J20. Furthermore, it is found that the two-stream laser with seff-field enhances the maximum gain in comparison with the single stream case.
文摘A theory for the two-stream free-electron laser with an electromagnetic wiggler (EMW) and an ion channel guiding is developed. In the analysis, the effects of self-fields have been taken into account. The electron trajectories and the small signal gain are derived. The stability of the trajectories, the characteristics of the linear gain and the normalized maximum gain are studied numerically. The dependence of the normalized frequency ω corresponding to the maximum gain on the ion-channel frequency is presented. The results show that there are seven groups of orbits in the presence of the self-fields, which are similar to those reported in the absence of the self-fields. It is also shown that the normalized gains of 2 groups decrease while the rest increase with the increasing normalized ion-channel frequency. Furthermore, it is found that the two-stream instability and the self-field lead to a decrease in the maximum gain except for group 4.
基金Project supported by the Plasma Physics Research Center,Science and Research Branch,Islamic Azad University
文摘A theory for the two-stream free-electron laser(TSFEL) with a helical wiggler and an axial guide magnetic field is developed.In the analysis,the effects of self-fields are taken into account.An analysis of the two-stream steady-state electron trajectories is given by solving the equation of motion.Numerical calculations show that there are seven groups of orbits in the presence of self-fields instead of two groups reported in the absence of self-fields.The stability of the trajectories is studied numerically.
文摘A nonlinear and non-averaged model of a two-beam free-electron laser (FEL) wiggler that is tapered nonlinearly in the absence of slippage is presented. The two beams are assumed to have different energies, and the fundamental resonance of the higher energy beam is at the third harmonic of the lower energy beam. By using Maxwell's equations and the full Lorentz force equation of motion for the electron beams, coupled differential equations are derived and solved numerically by the fourth-order Runge-Kutta method. The amplitude of the wiggler field is assumed to decrease nonlinearly when the saturation of the third harmonic occurs. By simulation, the optimum starting point of the tapering and the slopes for reducing the wiggler amplitude are found. This technique can be applied to substantially improve the efficiency of the two-beam FEL in the XUV and X-ray regions. The effect of tapering on the dynamical stability of the fast electron beam is also studied.
文摘A three-dimensional simulation of a steady-state amplifier model of a long-wavelength free-electron laser (FEL) with realizable helical wiggler and ion-channel guiding is presented. The set of coupled nonlinear differential equations for electron orbits and fields of TE 11 mode in a cylindrical waveguide are solved numerically by the Runge–Kutta algorithm with averages calculated by the Gaussian quadrature technique. Self-fields and space-charge effects are neglected, and the electron beam is assumed to be cold and slippage is ignored. The parameters correspond to the Compton regime. Evolution of the radiation power and growth rate along the wiggler is studied. Ion-channel density is chosen to obtain optimum efficiency. Simulations are preformed for the FEL operating in the neighborhood of 35 GHz and 16.5 GHz for the electron beam energies of 250 keV and 400 keV, respectively. The result of the saturated efficiency was found to be in good agreement with the simple estimation based on the phase-trapping model.
文摘The theory for the two-stream free electron laser (FEL) consisting of a relativistic electron beam transporting along the axis of a helical wiggler in the presence of an axial guiding magnetic field is proposed and investigated. In the analysis, the effects of self-fields are taken into account. The electron trajectories and the small signal gain are derived. The characteristics of the linear-gain and the normalized maximum gain are studied numerically. The results show that there are seven stable groups of orbits in the presence of self-fields instead of two groups reported in the absence of the self-fields. It is also shown that the normalized gains of three groups decrease while the rest increase with the increasing of normalized cyclotron frequency g20. Furthermore, it is found that the two-stream instability and the self-field lead to a decrease in the maximum gain except for group 3. The results show that the normalized maximum gain is enhanced in comparison with that of the single stream.
文摘The effects of corrugated ion channels on electron trajectories and spatial growth rate for a free-electron laser with a one-dimensional helical wiggler have been investigated. Analysis of the steady-state electron trajectories is performed by solving the equations of motion. Our results show that the presence of a corrugated channel shifts the resonance frequency to smaller values of ion channel frequency. The sixth-order dispersion equation describing the coupling between the electrostatic beam mode and the electromagnetic mode has also been derived. The dispersion relation characteristic is analyzed in detail by numerical solution. Results show that the growth rate of instability in the presence of corrugated ion channels can be greatly enhanced relative to the case of an uniform ion channel.
基金supported by the Plasma Physics Research Center, Science and Research Branch, Islamic Azad University
文摘The effects of self-fields on electron trajectories and gain in planar wiggler free-electron lasers with two-stream and ion-channel guiding are investigated. An analysis of the two-stream quasi-steady-state electron trajectories is given by solving the equation of motion in the presence of ion-channel guiding and the planar wiggler. The electron trajectories and the gain are derived. The stability of the trajectories, the characteristics of the linear gain, and the normalized maximum gain are studied numerically. The numerical calculations show that there are eight group trajectories rather than the two groups reported in the absence of the self-fields. It is also shown that the normalized gain group seven (G7) decreases while the rest increases with the increase in normalized ion-channel frequency. The two-stream instability and the self-field lead to a decrease in the maximum gain, except for G7.
文摘The theory for a two-stream free electron laser (FEL) consisting of a relativistic electron beam transported alongthe axis of a planar wiggler in the presence of an axial guiding magnetic field is proposed and investigated. The electron trajectories and the small signal gain are derived. The characteristic of the linear gain and the normalized maximum gain are studied numerically. The result shows that the normalized maximum gain is considerably enhanced in comparison with that of the single stream. The effect of the difference between the energies of the two beams in this configuration of FEL is also considered, and we find that the gain is affected by the energy differences between groups 1 and 2.
基金supported by the National Key Research and Development Program of China(No.2016YFA0401900)the National Natural Science Foundation of China(Nos.11475250 and11775293)+1 种基金the Young Elite Scientist Sponsorship Program of CAST(2015QNRC001)the Ten Thousand Talent Program
文摘Generation of intense, fully coherent radiation with wide spectral coverage has been a long-standing challenge for laser technologies. Several techniques have been developed in recent years to extend the spectral coverage in optical physics, but none of them hold the potential to produce X-ray laser pulses with very high-peak power. Urgent demands for intense X-ray light sources have prompted the development of free-electron lasers(FELs), which have been proved to be very useful tools in many scientific areas. In this paper, we give an overview of the basic principle of FELs, techniques for realizing fully coherent FELs, and the development of fully coherent FEL facilities in China.
基金partially supported by the Major State Basic Research Development Program of China(No.2011CB808300)the National Natural Science Foundation of China(Nos.11175240,11205234 and 11322550)
文摘In this article, we present the promise of a new method generating double electron pulses in picosecondscale pulse length and tunable interpulse spacing at several picoseconds. This has witnessed an impressive potential of application in pump–probe techniques, two-color X-ray free electron laser, high-gradient witness bunch acceleration in a plasma, etc. Three-dimensional simulations are carried out to analyze the dynamic of the electron beam in a linear accelerator. Comparisons are made between the new method and existing ways.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10875003).
文摘Quantum electrodynamics in a laser is formulated, in which the electron–laser interaction is exactly considered, while the interaction of an electron and a single photon is considered by perturbation. The formulation is applied to the electron– laser collisions. The effect of coherence between photons in the laser is therefore fully considered in these collisions. The possibility of γ-ray laser generation by use of this kind of collision is discussed.