The effect of In composition on two-dimensional electron gas in wurtzite AlGaN/InGaN heterostructures is theoretically investigated. The sheet carrier density is shown to increase nearly linearly with In mole fraction...The effect of In composition on two-dimensional electron gas in wurtzite AlGaN/InGaN heterostructures is theoretically investigated. The sheet carrier density is shown to increase nearly linearly with In mole fraction x, due to the increase in the polarization charge at the AlGaN/InGaN interface. The electron sheet density is enhanced with the doping in the AlGaN layer. The sheet carrier density is as high as 3.7×1013 cm^-2 at the donor density of 10×1018 cm^-3 for the HEMT structure with x=0.3. The contribution of additional donor density on the electron sheet density is nearly independent of the In mole fraction.展开更多
An optical readout uncooled infrared detector, employing a substrate-free focal plane array with pitch size 60μm, is established. The reflector deformation induced by the stress mismatching of the bi-layer structure ...An optical readout uncooled infrared detector, employing a substrate-free focal plane array with pitch size 60μm, is established. The reflector deformation induced by the stress mismatching of the bi-layer structure is discussed and, in turn, a universal solution to determine both the optical readout sensitivity and the optimal filter position is found. By applying this solution, the optical readout sensitivity for the ideal plane reflector could theoretically increase by 80% as compared with the conventional operation, and the sensitivity loss caused by the reflector deformation can also be reduced to a reasonable level.展开更多
Optical ring-resonator-based modulators are fabricated on the silicon-on-insulator material through the mature commercial 0.8μm complementary metal oxide semiconductor foundry. The device configuration is based on a ...Optical ring-resonator-based modulators are fabricated on the silicon-on-insulator material through the mature commercial 0.8μm complementary metal oxide semiconductor foundry. The device configuration is based on a single ring resonator coupled to one bus waveguide. The waveguide widths are about 1 μm. The p-i-n junctions are employed to inject currents. The experimental result shows that the ring resonators with the quality factor of above 40000 are obtained. The maximum extinction ratio of the modulators is larger than 10dB. The speed is tens of nanoseconds, and the corresponding injected current is smaller than 10 mA.展开更多
The non-equilibrium Green's function (NEGF) technique provides a solid foundation for the development of quantum mechanical simulators. However, the convergence is always of great concern. We present a general anal...The non-equilibrium Green's function (NEGF) technique provides a solid foundation for the development of quantum mechanical simulators. However, the convergence is always of great concern. We present a general analytical formalism to acquire the accurate derivative of electron density with respect to electrical potential in the framework of NEGF. This formalism not only provides physical insight on non-local quantum phenomena in device simulation, but also can be used to set up a new scheme in solving the Poisson equation to boost the performance of convergence when the NEGF and Poisson equations are solved self-consistently. This method is illustrated by a simple one-dimensional example of an N++ N+ N++ resistor. The total simulation time and iteration number are largely reduced.展开更多
Based on the non-equilibrium Green's function formalism and first-principles calculations, we investigate the electronic transport properties of an anthracene-based molecular switch with two carbon nanotube electrode...Based on the non-equilibrium Green's function formalism and first-principles calculations, we investigate the electronic transport properties of an anthracene-based molecular switch with two carbon nanotube electrodes. Our results show that different terminations at the carbon nanotube end strongly affect the transport properties of the switch. In the case of H-termination the current at low biases is dominated by non-resonant tunneling. In the N-termination case the current at low biases is dominated by quasi-resonant tunneling and is increased by several orders of magnitude. The enhancement is discussed by the molecular projected self-consistent Hamiltonian level, transmission function, and local density of states.展开更多
We present the design of a planar metamaterial absorber based on lumped elements, which shows a wide-band polarization-insensitive and wide-angle strong absorption. This absorber consists of metal electric resonators,...We present the design of a planar metamaterial absorber based on lumped elements, which shows a wide-band polarization-insensitive and wide-angle strong absorption. This absorber consists of metal electric resonators, the dielectric substrate, the metal film and lumped elements. The simulated absorbances under two different loss conditions indicate that high absorbance in the absorption band is mainly due to lumped resistances. The simulated absorbances under three different load conditions indicate that the local resonance circuit (lumped resistance and capacitance) could boost up the resonance of the whole RLC circuit. The simulated voltage in lumped elements indicates that the transformation efficiency from electromagnetic energy to electric energy in the absorption band is high, and electric energy is subsequently consumed by lumped resistances. This absorber may have potential applications in many military fields.展开更多
We report on the growth and fabrication of deep ultraviolet (DUV) light emitting diodes (LEDs) on an AIN template which was grown on a pulsed atomic-layer epitaxial buffer layer. Threading dislocation densities i...We report on the growth and fabrication of deep ultraviolet (DUV) light emitting diodes (LEDs) on an AIN template which was grown on a pulsed atomic-layer epitaxial buffer layer. Threading dislocation densities in the AlN layer are greatly decreased with the introduction of this buffer layer. The crystalline quality of the AlGaN epilayer is further improved by using a low-temperature GaN interlayer between AlGaN and AlN. Electroluminescences of different DUV-LED devices at a wavelength of between 262 and 317nm are demonstrated. To improve the hole concentration of p-type AlGaN, Mg-doping with trimethylindium assistance approach is performed. It is found that the serial resistance of DUV-LED decreases and the performance of DUV-LED such as EL properties is improved.展开更多
An undoped electrophosphorescent organic light-emitting diode is fabricated using a pure platinum(Ⅱ) (2-phenylpyridinato-N, Ca) (3-benzoyl-camphor) [(ppy)pt(bcam)] phosphorescent layer acting as the emittin...An undoped electrophosphorescent organic light-emitting diode is fabricated using a pure platinum(Ⅱ) (2-phenylpyridinato-N, Ca) (3-benzoyl-camphor) [(ppy)pt(bcam)] phosphorescent layer acting as the emitting layer. A maximum power efficiency Tlp of 6.621m/W and current efficiency of 14.78 cd/A at 745 cd/m2 are obtained from the device. The roll-off percentage of ηp of the pure phosphorescent phosphor layer device is reduced to 5% at a current density of 20mA/cm2, which is about 11% for conventional phosphorescent devices. The low roll-off efficiency is attributed to the phosphorescent material, which has the molecular structure of a strong steric hindrance effect.展开更多
The mathematical expression of the electron diffusion and drift length LDE of exponential doping photocathode is deduced. In the quantum efficiency equation of the reflection-mode uniform doping cathode, substituting ...The mathematical expression of the electron diffusion and drift length LDE of exponential doping photocathode is deduced. In the quantum efficiency equation of the reflection-mode uniform doping cathode, substituting LDE for LD, the equivalent quantum efficiency equation of the reflection-mode exponential doping cathode is obtained. By using the equivalent equation, theoretical simulation and experimental analysis shows that the equivalent index formula and formula-doped cathode quantum efficiency results in line. The equivalent equation avoids complicated calculation, thereby simplifies the process of solving the quantum efficiency of exponential doping photocathode.展开更多
We report a thin film electroluminescent device with a three-layer structure (diamond/CeF3/SiO2 films), which has a luminance of 1.5 cd/m^2 at dc voltage 215 V. The electroluminescence spectrum at room temperature s...We report a thin film electroluminescent device with a three-layer structure (diamond/CeF3/SiO2 films), which has a luminance of 1.5 cd/m^2 at dc voltage 215 V. The electroluminescence spectrum at room temperature shows that the main peaks locate at 527 and 593nm, which are attributed to isolated emission centers of Ce^3+ ions.展开更多
We demonstrate 10 Gb/s directly-modulated 1.3 μm InAs quantum-dot (QD) lasers grown on GaAs substrates by molecular beam epitaxy. The active region of the QD lasers consists of five-stacked InAs QD layers. Ridge-wa...We demonstrate 10 Gb/s directly-modulated 1.3 μm InAs quantum-dot (QD) lasers grown on GaAs substrates by molecular beam epitaxy. The active region of the QD lasers consists of five-stacked InAs QD layers. Ridge-waveguide lasers with a ridge width of 4 μm and a cavity length of 600 μm are fabricated with standard lithography and wet etching techniques. It is found that the lasers emit at 1293 nm with a very low threshold current of 5 mA at room temperature. Furthermore, clear eye-opening patterns under 10 Gb/s modulation rate at temperatures of up to 50oC are achieved by the QD lasers. The results presented here have important implications for realizing low-cost, low-power-consumption, and high-speed light sources for next-generation communication systems.展开更多
We propose a new method to reveal a direct transformation from solar energy to solar electricity. Instead of using electricity in the process, we use concentrated solar rays with a crucibleless process to upgrade meta...We propose a new method to reveal a direct transformation from solar energy to solar electricity. Instead of using electricity in the process, we use concentrated solar rays with a crucibleless process to upgrade metallurgical silicon into solar-grade silicon feedstock.展开更多
A composite right/left-handed (CRLH) coplanar waveguide (CPW) structure and its leaky-wave antenna (LWA) with continuous backward-to-forward scanning applications are proposed. The structure of the CRLH transmis...A composite right/left-handed (CRLH) coplanar waveguide (CPW) structure and its leaky-wave antenna (LWA) with continuous backward-to-forward scanning applications are proposed. The structure of the CRLH transmission line (TL) is composed of split-ring resonators (SRRs) for left-handed (LH) series capacitance and short-circuited stubs connected between the CPW central signal line and the ground for LH shunt inductance, while the unavoidable right-handed (RH) parasitic effects series inductance and shunt capacitance are generated by wave propagation through the host transmission line. The dispersion relations are calculated and compared with the equivalent circuit model method and 3D full-wave simulations, which can be used to determine the physical dimensions of the CRLH-CPW, such as in the balanced CRLH-TL case. As a main example, a CRLH-CPW-LWA operating from 1.67 GHz to 1.80 GHz with the dispersion characteristics of the balanced CRLH-TL case shows continuous leakage frequency band (fast wave region) from LH (phase constant β 〈0, .67〈f〈1.74 GHz) to RH (β〉0, 1.74〈f〈1.80 GHz) state through the transition frequency point (β=0, f=1.74 GHz), whereas conventional LWAs operated in RH state only provide forward scanning capabilities (β〉0).展开更多
Transition-metal oxides have attracted much attention due to its abundant crystalline phases and intriguing physical properties. However, some of these compounds are difficult to be fabricated directly in film form du...Transition-metal oxides have attracted much attention due to its abundant crystalline phases and intriguing physical properties. However, some of these compounds are difficult to be fabricated directly in film form due to the ease of valence variation of transition-metal elements.In this work, we reveal the reversible structural transition between SrVO3 and Sr2V2O7 films via thermal treatment in oxygen atmosphere or in vacuum. Based on this, Sr2V2O7 epitaxial films are successfully synthesized and studied. Property characterizations show that the semitransparent and metallic SrVO3 could reversibly switch into transparent and insulating Sr2V2O7, implying potential applications in controllable electronic and optical devices.展开更多
Top-illuminated metamorphic InGaAs p-i-n photodetectors (PDs) with 50% cut-off wavelength of 1.75 μm at room temperature are fabricated on GaAs substrates. The PDs are grown by a solid-source molecular beam epitaxy...Top-illuminated metamorphic InGaAs p-i-n photodetectors (PDs) with 50% cut-off wavelength of 1.75 μm at room temperature are fabricated on GaAs substrates. The PDs are grown by a solid-source molecular beam epitaxy system. The large lattice mismatch strain is accommodated by growth of a linearly graded buffer layer to create a high quality virtual InP substrate indium content in the metamorphic buffer layer linearly changes from 2% to 60%. The dark current densities are typically 5 × 10^-6 A/cm^2 at 0 V bias and 2.24 × 10^-4 A/cm^2 at a reverse bias of 5 V. At a wavelength of 1.55 μm, the PDs have an optical responsivity of 0.48 A/W, a linear photoresponse up to 5 mW optical power at -4 V bias. The measured -3 dB bandwidth of a 32 μm diameter device is 7 GHz. This work proves that InGaAs buffer layers grown by solid source MBE are promising candidates for GaAs-based long wavelength devices.展开更多
A silicon-based field emission light emitting diode for low-voltage operation is fabricated in the standard 0.35 μm 2P4M salieide complementary metal-oxide-semiconduetor (CMOS) technology. Partially overlapping p^...A silicon-based field emission light emitting diode for low-voltage operation is fabricated in the standard 0.35 μm 2P4M salieide complementary metal-oxide-semiconduetor (CMOS) technology. Partially overlapping p^+ and n^+ regions with a salicide block layer are employed in this device to constitute a heavily doped p^+-n^+ junction which has soft "knee" Zener breakdown characteristics, thus its working voltage can be reduced preferably below 5 V, and at the same time the power efficiency is improved. The spectra of this device are spread over 500nm to 1000nm with the main peak at about 722nm and an obvious red shift of the spectra peak is observed with the increasing current through the device. During the emission process, field emission rather than avalanche process plays a major role. Differences between low-voltage Zener breakdown emission and high-voltage avalanche breakdown emission performance are observed and compared.展开更多
The bending efficiency of three-dimensional bent multiple-slot waveguides is studied by applying a combined method of effective-index and modified transfer-matrix methods. The effects of asymmetric structure, asymmetr...The bending efficiency of three-dimensional bent multiple-slot waveguides is studied by applying a combined method of effective-index and modified transfer-matrix methods. The effects of asymmetric structure, asymmetric slots, and asymmetric middle strips on the bending efficiency are investigated. We show that the bending efficiency can be improved by the use of asymmetric structures and asymmetric middle strips. The bending efficiency of different slot waveguides (up to quintuple-slot structure) is compared. It is revealed that although the single-slot waveguide in general provides the lowest bending loss for the same waveguide parameters, it is possible that the multiple-slot waveguide can present a lower bending loss than the single-slot one.展开更多
We propose a low-cost and high-damage-threshold phase control system that employs a piezoelectric ceramic transducer modulator controlled by a stochastic parallel gradient descent algorithm. Efficient phase locking of...We propose a low-cost and high-damage-threshold phase control system that employs a piezoelectric ceramic transducer modulator controlled by a stochastic parallel gradient descent algorithm. Efficient phase locking of two fiber amplifiers is demonstrated. Experimental results show that energy encircled in the target pinhole is increased by a factor of 1.76 and the visibility of the fringe pattern is as high as 90% when the system is in close-loop. The phase control system has potential in phase locking of large-number and high-power fiber laser endeavors.展开更多
We present a method based on the selective liquid infiltration in air holes to produce slow light in a coupled-cavity waveguide structured by two-dimensional photonic crystal and analyze the slow light propagation in ...We present a method based on the selective liquid infiltration in air holes to produce slow light in a coupled-cavity waveguide structured by two-dimensional photonic crystal and analyze the slow light propagation in the coupled-cavity waveguide with triangular lattice. The group velocity profile of different coupled-cavity waveguides, obtained by the selective liquid infiltration in the holes between the cavities in waveguide and the increased radius of the first row of holes adjacent to the waveguide, is evaluated by using both the plane-wave expansion method and a tight binding model. We determine the optimal parameters to reduce the group velocity. Using a simpler coupled-cavity waveguide structure we obtain smaller group velocity compared to most investigations.展开更多
In a recent paper [Yan F L et al. Chin.Phys.Lett. 25(2008)1187], a quantum secret sharing the protocol between multiparty and multiparty with single photons and unitary transformations was presented. We analyze the ...In a recent paper [Yan F L et al. Chin.Phys.Lett. 25(2008)1187], a quantum secret sharing the protocol between multiparty and multiparty with single photons and unitary transformations was presented. We analyze the security of the protocol and find that a dishonest participant can eavesdrop the key by using a special attack. Finally, we give a description of this strategy and put forward an improved version of this protocol which can stand against this kind of attack.展开更多
文摘The effect of In composition on two-dimensional electron gas in wurtzite AlGaN/InGaN heterostructures is theoretically investigated. The sheet carrier density is shown to increase nearly linearly with In mole fraction x, due to the increase in the polarization charge at the AlGaN/InGaN interface. The electron sheet density is enhanced with the doping in the AlGaN layer. The sheet carrier density is as high as 3.7×1013 cm^-2 at the donor density of 10×1018 cm^-3 for the HEMT structure with x=0.3. The contribution of additional donor density on the electron sheet density is nearly independent of the In mole fraction.
基金Supported by grants from by the Natural Science Foundation of China under Grant Nos 10732080, 10627201 and 10872191, and the National Basic Research Program of China under Grant No 2006CB300404.
文摘An optical readout uncooled infrared detector, employing a substrate-free focal plane array with pitch size 60μm, is established. The reflector deformation induced by the stress mismatching of the bi-layer structure is discussed and, in turn, a universal solution to determine both the optical readout sensitivity and the optimal filter position is found. By applying this solution, the optical readout sensitivity for the ideal plane reflector could theoretically increase by 80% as compared with the conventional operation, and the sensitivity loss caused by the reflector deformation can also be reduced to a reasonable level.
基金Supported by the National Basic Research Program of China under Grant No 2007CB613405, the National Natural Science Foundation of China under Grant No 60676028, and the Science and Technology Program of Zhejiang Province under Grant No 2007C21022.
文摘Optical ring-resonator-based modulators are fabricated on the silicon-on-insulator material through the mature commercial 0.8μm complementary metal oxide semiconductor foundry. The device configuration is based on a single ring resonator coupled to one bus waveguide. The waveguide widths are about 1 μm. The p-i-n junctions are employed to inject currents. The experimental result shows that the ring resonators with the quality factor of above 40000 are obtained. The maximum extinction ratio of the modulators is larger than 10dB. The speed is tens of nanoseconds, and the corresponding injected current is smaller than 10 mA.
文摘The non-equilibrium Green's function (NEGF) technique provides a solid foundation for the development of quantum mechanical simulators. However, the convergence is always of great concern. We present a general analytical formalism to acquire the accurate derivative of electron density with respect to electrical potential in the framework of NEGF. This formalism not only provides physical insight on non-local quantum phenomena in device simulation, but also can be used to set up a new scheme in solving the Poisson equation to boost the performance of convergence when the NEGF and Poisson equations are solved self-consistently. This method is illustrated by a simple one-dimensional example of an N++ N+ N++ resistor. The total simulation time and iteration number are largely reduced.
基金Supported by the Natural Science Foundation of Shandong Province under Grant No ZR2009AL004.
文摘Based on the non-equilibrium Green's function formalism and first-principles calculations, we investigate the electronic transport properties of an anthracene-based molecular switch with two carbon nanotube electrodes. Our results show that different terminations at the carbon nanotube end strongly affect the transport properties of the switch. In the case of H-termination the current at low biases is dominated by non-resonant tunneling. In the N-termination case the current at low biases is dominated by quasi-resonant tunneling and is increased by several orders of magnitude. The enhancement is discussed by the molecular projected self-consistent Hamiltonian level, transmission function, and local density of states.
基金Supported by the National Natural Science Foundation of China under Grant Nos 50632030, 60871027, 60901029 and 61071058, the National Basic Research Program of China under Grant No 2009CB613306, and by Shaanxi Provincial Research Foundation for Basic Research under Grant No SJ08F01.
文摘We present the design of a planar metamaterial absorber based on lumped elements, which shows a wide-band polarization-insensitive and wide-angle strong absorption. This absorber consists of metal electric resonators, the dielectric substrate, the metal film and lumped elements. The simulated absorbances under two different loss conditions indicate that high absorbance in the absorption band is mainly due to lumped resistances. The simulated absorbances under three different load conditions indicate that the local resonance circuit (lumped resistance and capacitance) could boost up the resonance of the whole RLC circuit. The simulated voltage in lumped elements indicates that the transformation efficiency from electromagnetic energy to electric energy in the absorption band is high, and electric energy is subsequently consumed by lumped resistances. This absorber may have potential applications in many military fields.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10774001, 60736033, 60776041 and 60876041, and National Basic Research Program of China under Grant Nos 2006CB604908 and 2006CB921607, and the National Key Basic R&D Plan of China under Grant Nos TG2007CB307004.
文摘We report on the growth and fabrication of deep ultraviolet (DUV) light emitting diodes (LEDs) on an AIN template which was grown on a pulsed atomic-layer epitaxial buffer layer. Threading dislocation densities in the AlN layer are greatly decreased with the introduction of this buffer layer. The crystalline quality of the AlGaN epilayer is further improved by using a low-temperature GaN interlayer between AlGaN and AlN. Electroluminescences of different DUV-LED devices at a wavelength of between 262 and 317nm are demonstrated. To improve the hole concentration of p-type AlGaN, Mg-doping with trimethylindium assistance approach is performed. It is found that the serial resistance of DUV-LED decreases and the performance of DUV-LED such as EL properties is improved.
基金Supported by the National Natural Science Foundation of China under Grant No 20472060.
文摘An undoped electrophosphorescent organic light-emitting diode is fabricated using a pure platinum(Ⅱ) (2-phenylpyridinato-N, Ca) (3-benzoyl-camphor) [(ppy)pt(bcam)] phosphorescent layer acting as the emitting layer. A maximum power efficiency Tlp of 6.621m/W and current efficiency of 14.78 cd/A at 745 cd/m2 are obtained from the device. The roll-off percentage of ηp of the pure phosphorescent phosphor layer device is reduced to 5% at a current density of 20mA/cm2, which is about 11% for conventional phosphorescent devices. The low roll-off efficiency is attributed to the phosphorescent material, which has the molecular structure of a strong steric hindrance effect.
基金Supported by the National Natural Science Foundation of China under Grant No 60678043.
文摘The mathematical expression of the electron diffusion and drift length LDE of exponential doping photocathode is deduced. In the quantum efficiency equation of the reflection-mode uniform doping cathode, substituting LDE for LD, the equivalent quantum efficiency equation of the reflection-mode exponential doping cathode is obtained. By using the equivalent equation, theoretical simulation and experimental analysis shows that the equivalent index formula and formula-doped cathode quantum efficiency results in line. The equivalent equation avoids complicated calculation, thereby simplifies the process of solving the quantum efficiency of exponential doping photocathode.
文摘We report a thin film electroluminescent device with a three-layer structure (diamond/CeF3/SiO2 films), which has a luminance of 1.5 cd/m^2 at dc voltage 215 V. The electroluminescence spectrum at room temperature shows that the main peaks locate at 527 and 593nm, which are attributed to isolated emission centers of Ce^3+ ions.
基金Supported by the National High-Technology Research and Development Program of China under Grant No 2006AA03Z401, One-Hundred Talents Program of Chinese Academy of Sciences, and the National Natural Science Foundation of China under Grant No 60876033.
文摘We demonstrate 10 Gb/s directly-modulated 1.3 μm InAs quantum-dot (QD) lasers grown on GaAs substrates by molecular beam epitaxy. The active region of the QD lasers consists of five-stacked InAs QD layers. Ridge-waveguide lasers with a ridge width of 4 μm and a cavity length of 600 μm are fabricated with standard lithography and wet etching techniques. It is found that the lasers emit at 1293 nm with a very low threshold current of 5 mA at room temperature. Furthermore, clear eye-opening patterns under 10 Gb/s modulation rate at temperatures of up to 50oC are achieved by the QD lasers. The results presented here have important implications for realizing low-cost, low-power-consumption, and high-speed light sources for next-generation communication systems.
文摘We propose a new method to reveal a direct transformation from solar energy to solar electricity. Instead of using electricity in the process, we use concentrated solar rays with a crucibleless process to upgrade metallurgical silicon into solar-grade silicon feedstock.
文摘A composite right/left-handed (CRLH) coplanar waveguide (CPW) structure and its leaky-wave antenna (LWA) with continuous backward-to-forward scanning applications are proposed. The structure of the CRLH transmission line (TL) is composed of split-ring resonators (SRRs) for left-handed (LH) series capacitance and short-circuited stubs connected between the CPW central signal line and the ground for LH shunt inductance, while the unavoidable right-handed (RH) parasitic effects series inductance and shunt capacitance are generated by wave propagation through the host transmission line. The dispersion relations are calculated and compared with the equivalent circuit model method and 3D full-wave simulations, which can be used to determine the physical dimensions of the CRLH-CPW, such as in the balanced CRLH-TL case. As a main example, a CRLH-CPW-LWA operating from 1.67 GHz to 1.80 GHz with the dispersion characteristics of the balanced CRLH-TL case shows continuous leakage frequency band (fast wave region) from LH (phase constant β 〈0, .67〈f〈1.74 GHz) to RH (β〉0, 1.74〈f〈1.80 GHz) state through the transition frequency point (β=0, f=1.74 GHz), whereas conventional LWAs operated in RH state only provide forward scanning capabilities (β〉0).
基金supported by the National Key R&D Program of China(No.2016YFA0300102)the National Natural Science Foundation of China(No.11675179,No.11434009,and No.11374010)+2 种基金the Fundamental Research Funds for the Central Universities(No.WK2340000065)partially carried out at the University of Science and Technology of China(USTC)center for Micro and Nanoscale Research and Fabricationthe support from the magnetic circular dichroism endstation at Hefei Light Source
文摘Transition-metal oxides have attracted much attention due to its abundant crystalline phases and intriguing physical properties. However, some of these compounds are difficult to be fabricated directly in film form due to the ease of valence variation of transition-metal elements.In this work, we reveal the reversible structural transition between SrVO3 and Sr2V2O7 films via thermal treatment in oxygen atmosphere or in vacuum. Based on this, Sr2V2O7 epitaxial films are successfully synthesized and studied. Property characterizations show that the semitransparent and metallic SrVO3 could reversibly switch into transparent and insulating Sr2V2O7, implying potential applications in controllable electronic and optical devices.
文摘Top-illuminated metamorphic InGaAs p-i-n photodetectors (PDs) with 50% cut-off wavelength of 1.75 μm at room temperature are fabricated on GaAs substrates. The PDs are grown by a solid-source molecular beam epitaxy system. The large lattice mismatch strain is accommodated by growth of a linearly graded buffer layer to create a high quality virtual InP substrate indium content in the metamorphic buffer layer linearly changes from 2% to 60%. The dark current densities are typically 5 × 10^-6 A/cm^2 at 0 V bias and 2.24 × 10^-4 A/cm^2 at a reverse bias of 5 V. At a wavelength of 1.55 μm, the PDs have an optical responsivity of 0.48 A/W, a linear photoresponse up to 5 mW optical power at -4 V bias. The measured -3 dB bandwidth of a 32 μm diameter device is 7 GHz. This work proves that InGaAs buffer layers grown by solid source MBE are promising candidates for GaAs-based long wavelength devices.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60536030, 60776024, 60877035 and 90820002, the National High-Technology Research and Development Program of China under Grant Nos 2007AA04Z329 and 2007AA04Z254.
文摘A silicon-based field emission light emitting diode for low-voltage operation is fabricated in the standard 0.35 μm 2P4M salieide complementary metal-oxide-semiconduetor (CMOS) technology. Partially overlapping p^+ and n^+ regions with a salicide block layer are employed in this device to constitute a heavily doped p^+-n^+ junction which has soft "knee" Zener breakdown characteristics, thus its working voltage can be reduced preferably below 5 V, and at the same time the power efficiency is improved. The spectra of this device are spread over 500nm to 1000nm with the main peak at about 722nm and an obvious red shift of the spectra peak is observed with the increasing current through the device. During the emission process, field emission rather than avalanche process plays a major role. Differences between low-voltage Zener breakdown emission and high-voltage avalanche breakdown emission performance are observed and compared.
文摘The bending efficiency of three-dimensional bent multiple-slot waveguides is studied by applying a combined method of effective-index and modified transfer-matrix methods. The effects of asymmetric structure, asymmetric slots, and asymmetric middle strips on the bending efficiency are investigated. We show that the bending efficiency can be improved by the use of asymmetric structures and asymmetric middle strips. The bending efficiency of different slot waveguides (up to quintuple-slot structure) is compared. It is revealed that although the single-slot waveguide in general provides the lowest bending loss for the same waveguide parameters, it is possible that the multiple-slot waveguide can present a lower bending loss than the single-slot one.
文摘We propose a low-cost and high-damage-threshold phase control system that employs a piezoelectric ceramic transducer modulator controlled by a stochastic parallel gradient descent algorithm. Efficient phase locking of two fiber amplifiers is demonstrated. Experimental results show that energy encircled in the target pinhole is increased by a factor of 1.76 and the visibility of the fringe pattern is as high as 90% when the system is in close-loop. The phase control system has potential in phase locking of large-number and high-power fiber laser endeavors.
文摘We present a method based on the selective liquid infiltration in air holes to produce slow light in a coupled-cavity waveguide structured by two-dimensional photonic crystal and analyze the slow light propagation in the coupled-cavity waveguide with triangular lattice. The group velocity profile of different coupled-cavity waveguides, obtained by the selective liquid infiltration in the holes between the cavities in waveguide and the increased radius of the first row of holes adjacent to the waveguide, is evaluated by using both the plane-wave expansion method and a tight binding model. We determine the optimal parameters to reduce the group velocity. Using a simpler coupled-cavity waveguide structure we obtain smaller group velocity compared to most investigations.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60873191, 60903152 and 60821001, the SRFDP under Grant No 200800131016, Beijing Nova Program under Grant No 2008B51, Key Project of the Ministry of Education of China under Grant No 109014, China Postdoctoral Science Foundation under Grant No 20090450018, Fujian Provincial Natural Science Foundation under Grant No 2008J0013, and the Foundation of Fujian Education Bureau under Grant No 3A08044.
文摘In a recent paper [Yan F L et al. Chin.Phys.Lett. 25(2008)1187], a quantum secret sharing the protocol between multiparty and multiparty with single photons and unitary transformations was presented. We analyze the security of the protocol and find that a dishonest participant can eavesdrop the key by using a special attack. Finally, we give a description of this strategy and put forward an improved version of this protocol which can stand against this kind of attack.