The chemically induced dynamic electron polarization (CIDEP) of the triplet molecule/triplet quencher/2, 2, 6, 6-tetramethyl-1-piperidinyloxyl (TEMPO) systems were measured using the high time-resolved ESR spectromete...The chemically induced dynamic electron polarization (CIDEP) of the triplet molecule/triplet quencher/2, 2, 6, 6-tetramethyl-1-piperidinyloxyl (TEMPO) systems were measured using the high time-resolved ESR spectrometer. The competition between the radical-triplet pair mechanism (RTPM) and triplet mechanism (TM) or radical pair mechanism (KIM) polarization in the solution of the triplet quencher was investigated, and the relationships between reaction rate of the radical-triplet pair and quenching rate of triplet was deduced.展开更多
A generalized response function based on the use of dielectric spectra for dielectric relaxation process is derived. We apply the general response function to the special case in order to examine how special dielectri...A generalized response function based on the use of dielectric spectra for dielectric relaxation process is derived. We apply the general response function to the special case in order to examine how special dielectric relaxation functions developed by other authors for solvent relaxation can be derived based on our formulations. Three typical solvents, water, methanol, and acetonitrile are used to investigate the electronic polarization processes of polar solvents. The solvent electronic polarization process is shown after a linear variation with the external electric field imposed on the solvent. The results show a conclusion that the electronic polarization of the solvents will accompany the electronic transition synchronously, without time lag.展开更多
With spin-polarized-dependent band gap renormalization effect taken into account, the energy-dependent evolu- tion of electron spin polarization in GaAs is calculated at room temperature and at a low temperature of 1O...With spin-polarized-dependent band gap renormalization effect taken into account, the energy-dependent evolu- tion of electron spin polarization in GaAs is calculated at room temperature and at a low temperature of 1OK. We consider the exciting light with right-handed circular polarization, and the calculation results show that the degree of electron spin polarization is dependent strongly on the quasi-Fermi levels of |1/2) and |- 1/2) spin conduction bands. At room temperature, the degree of electron spin polarization decreases sharply from 1 near the bottom of the conduction band, and then increases to a stable value above the quasi-Fermi level of the |- 1/2) band. The greater the quasi-Fermi level is, the higher the degree of electron spin polarization with excessive en- ergy above the quasi-Fermi level of the |- 1/2) band can be achieved. At low temperature, the degree of electron spin polarization decreases from 1 sharply near the bottom of the conduction band, and then increases with the excessive energy, and in particular, up to a maximum of i above the quasi-Fermi level of the |1/2) band.展开更多
The mechanical, electronic and magnetic properties of non-magnetic MgTe and ferro-magnetic (FM) Mgo.75 TM025 Te (TM = Fe, Co, Ni) in the zinc-blende phase are studied by ab-initio calculations for the first time. ...The mechanical, electronic and magnetic properties of non-magnetic MgTe and ferro-magnetic (FM) Mgo.75 TM025 Te (TM = Fe, Co, Ni) in the zinc-blende phase are studied by ab-initio calculations for the first time. We use the generalized gradient approximation functional for computing the structural stability, and mechanical properties, while the modified Becke and Johnson local (spin) density approximation (mBJLDA) is utilized for determining the electronic and magnetic properties. By comparing the energies of non-magnetic and FM calculations, we find that the compounds are stable in the FM phase, which is confirmed by their structural stabilities in terms of enthalpy of formation. Detailed descriptions of elastic properties of Mgo.75TMo.25Te alloys in the FM phase are also presented. For electronic properties, the spin- polarized electronic band structures and density of states are computed, showing that these compounds are direct bandgap materials with strong hybridizations of TM 3d states and Te p states. Further, the ferromagnetism is discussed in terms of the Zener free electron model, RKKY model and double exchange model. The charge density contours in the (110) plane are calculated to study bonding properties. The spin exchange splitting and crystal field splitting energies are also calculated. The distribution of electron spin density is employed in computing the magnetic moments appearing at the magnetic sites (Fe, Co, Ni), as well as at the non-magnetic sites (Mg, Te). It is found that the p-d hybridization causes not only magnetic moments on the magnetic sites but also induces negligibly small magnetic moments at the non-magnetic sites.展开更多
A new GaAs(100) spin polarized electron source with an optical polarimeter, which is employed in the field of polarized electron and gas atom collision, is presented in detail. The apparatus is passive-magnetic-shie...A new GaAs(100) spin polarized electron source with an optical polarimeter, which is employed in the field of polarized electron and gas atom collision, is presented in detail. The apparatus is passive-magnetic-shielded by a box and a cylinder made of nickel-iron-molybdenum soft magnetic alloy without Helmholtz coil arrangement. And a uniformly distributed residual magnetic field of less than 5 × 10^-7T is obtained near the collision area. The spin polarized electron beam is transmitted and focused onto collision point from photocathode by a set of electron optics with more than 25% transmission 95 cm distance through an 1 mm diameter aperture. Construction and operation of the apparatus, such as vacuum and magnetic shielding system, photocathode, laser optics, electron optics and polarimeter are discussed. The polarization of the spin polarized electron beam is determined to be 30.8 ±3.5% measured with a He optical polarimeter.展开更多
Polarized electron beam production via laser wakefield acceleration in pre-polarized plasma is investigated by particlein-cell simulations.The evolution of the electron beam polarization is studied based on the Thomas...Polarized electron beam production via laser wakefield acceleration in pre-polarized plasma is investigated by particlein-cell simulations.The evolution of the electron beam polarization is studied based on the Thomas±Bargmann±Michel±Telegdi equation for the transverse and longitudinal self-injection,and the depolarization process is found to be influenced by the injection schemes.In the case of transverse self-injection,as found typically in the bubble regime,the spin precession of the accelerated electrons is mainly influenced by the wakefield.However,in the case of longitudinal injection in the quasi-1D regime(for example,F.Y.Li et al.,Phys.Rev.Lett.110,135002(2013)),the direction of electron spin oscillates in the laser field.Since the electrons move around the laser axis,the net influence of the laser field is nearly zero and the contribution of the wakefield can be ignored.Finally,an ultra-short electron beam with polarization of 99%can be obtained using longitudinal self-injection.展开更多
Based on 1.89×10^(8) J/ψ→ΛΛ Monte Carlo(MC)events produced from a longitudinally-polarized electron beam,the sensitivity of the CP violation of A decay is studied using fast simulation software.In addition,th...Based on 1.89×10^(8) J/ψ→ΛΛ Monte Carlo(MC)events produced from a longitudinally-polarized electron beam,the sensitivity of the CP violation of A decay is studied using fast simulation software.In addition,the J/ψ→ΛΛ decay can be used to optimize the detector response using the interface provided by the fast simulation software.In the future,the STCF is expected to obtain 3.4 trillion J/ψevents,and the statistical sensitivity of the CP violation of A decay via the J/ψ→ΛΛ process is expected to reach O(10^(-5))when the electron beam polarization is 80%.展开更多
The photoionization by two elliptically polarized, time delayed attosecond pulses is investigated to display a momentum distribution having the helical vortex or ring structuresi The results are obtained by the strong...The photoionization by two elliptically polarized, time delayed attosecond pulses is investigated to display a momentum distribution having the helical vortex or ring structuresi The results are obtained by the strong field approximation method and analyzed by the pulse decomposition. The ellipticities and time delay of the two attosecond pulses are found to determine the rotational symmetry and the number of vortex arms. For observing these vortex patterns, the energy bandwidth and temnoral duration of the attosecond pulses are ideal.展开更多
基金Project supported by Science Foundation of Anhui (No. 99jL0070)Youth Science Foundation of Anhui Normal University (No. 99XQ18)
文摘The chemically induced dynamic electron polarization (CIDEP) of the triplet molecule/triplet quencher/2, 2, 6, 6-tetramethyl-1-piperidinyloxyl (TEMPO) systems were measured using the high time-resolved ESR spectrometer. The competition between the radical-triplet pair mechanism (RTPM) and triplet mechanism (TM) or radical pair mechanism (KIM) polarization in the solution of the triplet quencher was investigated, and the relationships between reaction rate of the radical-triplet pair and quenching rate of triplet was deduced.
文摘A generalized response function based on the use of dielectric spectra for dielectric relaxation process is derived. We apply the general response function to the special case in order to examine how special dielectric relaxation functions developed by other authors for solvent relaxation can be derived based on our formulations. Three typical solvents, water, methanol, and acetonitrile are used to investigate the electronic polarization processes of polar solvents. The solvent electronic polarization process is shown after a linear variation with the external electric field imposed on the solvent. The results show a conclusion that the electronic polarization of the solvents will accompany the electronic transition synchronously, without time lag.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11504194 and 11274189the Project of Shandong-Provincial Higher Educational Science and Technology Program under Grant No J14LJ06the Application Foundation Research Program of Qingdao under Grant No 14-2-4-101-jch
文摘With spin-polarized-dependent band gap renormalization effect taken into account, the energy-dependent evolu- tion of electron spin polarization in GaAs is calculated at room temperature and at a low temperature of 1OK. We consider the exciting light with right-handed circular polarization, and the calculation results show that the degree of electron spin polarization is dependent strongly on the quasi-Fermi levels of |1/2) and |- 1/2) spin conduction bands. At room temperature, the degree of electron spin polarization decreases sharply from 1 near the bottom of the conduction band, and then increases to a stable value above the quasi-Fermi level of the |- 1/2) band. The greater the quasi-Fermi level is, the higher the degree of electron spin polarization with excessive en- ergy above the quasi-Fermi level of the |- 1/2) band can be achieved. At low temperature, the degree of electron spin polarization decreases from 1 sharply near the bottom of the conduction band, and then increases with the excessive energy, and in particular, up to a maximum of i above the quasi-Fermi level of the |1/2) band.
基金the Deanship of Scientific Research at King Saud University for funding this Prolific Research Group (PRG-1436-26)
文摘The mechanical, electronic and magnetic properties of non-magnetic MgTe and ferro-magnetic (FM) Mgo.75 TM025 Te (TM = Fe, Co, Ni) in the zinc-blende phase are studied by ab-initio calculations for the first time. We use the generalized gradient approximation functional for computing the structural stability, and mechanical properties, while the modified Becke and Johnson local (spin) density approximation (mBJLDA) is utilized for determining the electronic and magnetic properties. By comparing the energies of non-magnetic and FM calculations, we find that the compounds are stable in the FM phase, which is confirmed by their structural stabilities in terms of enthalpy of formation. Detailed descriptions of elastic properties of Mgo.75TMo.25Te alloys in the FM phase are also presented. For electronic properties, the spin- polarized electronic band structures and density of states are computed, showing that these compounds are direct bandgap materials with strong hybridizations of TM 3d states and Te p states. Further, the ferromagnetism is discussed in terms of the Zener free electron model, RKKY model and double exchange model. The charge density contours in the (110) plane are calculated to study bonding properties. The spin exchange splitting and crystal field splitting energies are also calculated. The distribution of electron spin density is employed in computing the magnetic moments appearing at the magnetic sites (Fe, Co, Ni), as well as at the non-magnetic sites (Mg, Te). It is found that the p-d hybridization causes not only magnetic moments on the magnetic sites but also induces negligibly small magnetic moments at the non-magnetic sites.
基金Project supported by the National Natural Science Foundation of China (Grant No 10134010).
文摘A new GaAs(100) spin polarized electron source with an optical polarimeter, which is employed in the field of polarized electron and gas atom collision, is presented in detail. The apparatus is passive-magnetic-shielded by a box and a cylinder made of nickel-iron-molybdenum soft magnetic alloy without Helmholtz coil arrangement. And a uniformly distributed residual magnetic field of less than 5 × 10^-7T is obtained near the collision area. The spin polarized electron beam is transmitted and focused onto collision point from photocathode by a set of electron optics with more than 25% transmission 95 cm distance through an 1 mm diameter aperture. Construction and operation of the apparatus, such as vacuum and magnetic shielding system, photocathode, laser optics, electron optics and polarimeter are discussed. The polarization of the spin polarized electron beam is determined to be 30.8 ±3.5% measured with a He optical polarimeter.
基金supported by the National Natural Science Foundation of China(Nos.11804348,11775056,11975154 and 11991074)the Science Challenge Project(No.TZ2018005).X.F.Li was also supported by the Shanghai Pujiang Program(No.23PJ1414600)。
文摘Polarized electron beam production via laser wakefield acceleration in pre-polarized plasma is investigated by particlein-cell simulations.The evolution of the electron beam polarization is studied based on the Thomas±Bargmann±Michel±Telegdi equation for the transverse and longitudinal self-injection,and the depolarization process is found to be influenced by the injection schemes.In the case of transverse self-injection,as found typically in the bubble regime,the spin precession of the accelerated electrons is mainly influenced by the wakefield.However,in the case of longitudinal injection in the quasi-1D regime(for example,F.Y.Li et al.,Phys.Rev.Lett.110,135002(2013)),the direction of electron spin oscillates in the laser field.Since the electrons move around the laser axis,the net influence of the laser field is nearly zero and the contribution of the wakefield can be ignored.Finally,an ultra-short electron beam with polarization of 99%can be obtained using longitudinal self-injection.
基金Supported by the National Key R&D Program of China(2022YFA1602200),the Science and Technology Innovation Program of Hunan Province,China(2020RC3054)the International Partnership Program of the Chinese Academy of Sciences(211134KYSB20200057)。
文摘Based on 1.89×10^(8) J/ψ→ΛΛ Monte Carlo(MC)events produced from a longitudinally-polarized electron beam,the sensitivity of the CP violation of A decay is studied using fast simulation software.In addition,the J/ψ→ΛΛ decay can be used to optimize the detector response using the interface provided by the fast simulation software.In the future,the STCF is expected to obtain 3.4 trillion J/ψevents,and the statistical sensitivity of the CP violation of A decay via the J/ψ→ΛΛ process is expected to reach O(10^(-5))when the electron beam polarization is 80%.
基金supported by the National Natural Science Foundation of China(Nos.11674243 and 11674242)the Fundamental Research Funds for the Central Universities(No.3122016D029)
文摘The photoionization by two elliptically polarized, time delayed attosecond pulses is investigated to display a momentum distribution having the helical vortex or ring structuresi The results are obtained by the strong field approximation method and analyzed by the pulse decomposition. The ellipticities and time delay of the two attosecond pulses are found to determine the rotational symmetry and the number of vortex arms. For observing these vortex patterns, the energy bandwidth and temnoral duration of the attosecond pulses are ideal.
基金Supported by the National Science Foundation of USA ( the most recent one being num bered PHY- 970 4 5 2 0 ) and by the U niversities of Missouri and Nebraska ( U SA )