This paper proposes a useful web-based system for the management and sharing of electron probe micro-analysis( EPMA)data in geology. A new web-based architecture that integrates the management and sharing functions is...This paper proposes a useful web-based system for the management and sharing of electron probe micro-analysis( EPMA)data in geology. A new web-based architecture that integrates the management and sharing functions is developed and implemented.Earth scientists can utilize this system to not only manage their data,but also easily communicate and share it with other researchers.Data query methods provide the core functionality of the proposed management and sharing modules. The modules in this system have been developed using cloud GIS technologies,which help achieve real-time spatial area retrieval on a map. The system has been tested by approximately 263 users at Jilin University and Beijing SHRIMP Center. A survey was conducted among these users to estimate the usability of the primary functions of the system,and the assessment result is summarized and presented.展开更多
A differential excitation probe based on eddy current testing technology was designed. Sheet specimens of Q 235 steel with prefabricated micro-cracks of different widths and of aluminum with prefabricated micro-cracks...A differential excitation probe based on eddy current testing technology was designed. Sheet specimens of Q 235 steel with prefabricated micro-cracks of different widths and of aluminum with prefabricated micro-cracks of different depths were detected through the designed detection system. The characteristics of micro-cracks can be clearly showed after signals processing through the short-time Fourier transform( STFT). By changing the parameter and its value in detecting process,the factors including the excitation frequency and amplitude,the lift-off effect and the scanning direction were discussed,respectively. The results showed that the differential excitation probe was insensitive to dimension and surface state of the tested specimen,while it had a high degree of recognition for micro-crack detection. Therefore,when the differential excitation detection technology was used for inspecting micro-crack of turbine blade in aero-engine,and smoothed pseudo Wigner-Ville distribution was used for signal processing,micro-cracks of 0. 3 mm depth and 0. 1 mm width could be identified. The experimental results might be useful for further research on engineering test of turbine blades of aero-engine.展开更多
The measurement of the confocal volume of a confocal three-dimensional micro-x-ray fluorescence(3D-XRF)setup is a key step in the field of confocal 3D-XRF analysis.With the development of x-ray facilities and optical ...The measurement of the confocal volume of a confocal three-dimensional micro-x-ray fluorescence(3D-XRF)setup is a key step in the field of confocal 3D-XRF analysis.With the development of x-ray facilities and optical devices,3D-XRF analysis with a micro confocal volume will create a great potential for 2D and 3D microstructural analysis and accurate quantitative analysis.However,the classic measurement method of scanning metal foils of a certain thickness leads to inaccuracy.A method for calibrating the confocal volume is proposed in this paper.The new method is based on the basic content of the textbook,and the theoretical results and the feasibility are given in detail for the 3D-XRF mono-chromatic x-ray condition and the poly-chromatic x-ray condition.We obtain a set of experimental confirmation using the poly-chromatic x-ray tube in the laboratory.It is proved that the sensitivity factor of the 3D-XRF can be directly and accurately obtained in a real calibration process.展开更多
基金National Major Scientific Instruments and Equipment Development Special Funds,China(No.2016YFF0103303)National Science and Technology Support Program,China(No.2014BAK02B03)
文摘This paper proposes a useful web-based system for the management and sharing of electron probe micro-analysis( EPMA)data in geology. A new web-based architecture that integrates the management and sharing functions is developed and implemented.Earth scientists can utilize this system to not only manage their data,but also easily communicate and share it with other researchers.Data query methods provide the core functionality of the proposed management and sharing modules. The modules in this system have been developed using cloud GIS technologies,which help achieve real-time spatial area retrieval on a map. The system has been tested by approximately 263 users at Jilin University and Beijing SHRIMP Center. A survey was conducted among these users to estimate the usability of the primary functions of the system,and the assessment result is summarized and presented.
基金Supported by the Ministerial Level Advanced Research Foundation(051317030586)Ph.D.Programs Foundation of the Ministry of Education of China(20121101110018)
文摘A differential excitation probe based on eddy current testing technology was designed. Sheet specimens of Q 235 steel with prefabricated micro-cracks of different widths and of aluminum with prefabricated micro-cracks of different depths were detected through the designed detection system. The characteristics of micro-cracks can be clearly showed after signals processing through the short-time Fourier transform( STFT). By changing the parameter and its value in detecting process,the factors including the excitation frequency and amplitude,the lift-off effect and the scanning direction were discussed,respectively. The results showed that the differential excitation probe was insensitive to dimension and surface state of the tested specimen,while it had a high degree of recognition for micro-crack detection. Therefore,when the differential excitation detection technology was used for inspecting micro-crack of turbine blade in aero-engine,and smoothed pseudo Wigner-Ville distribution was used for signal processing,micro-cracks of 0. 3 mm depth and 0. 1 mm width could be identified. The experimental results might be useful for further research on engineering test of turbine blades of aero-engine.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11675019 and 11875087).
文摘The measurement of the confocal volume of a confocal three-dimensional micro-x-ray fluorescence(3D-XRF)setup is a key step in the field of confocal 3D-XRF analysis.With the development of x-ray facilities and optical devices,3D-XRF analysis with a micro confocal volume will create a great potential for 2D and 3D microstructural analysis and accurate quantitative analysis.However,the classic measurement method of scanning metal foils of a certain thickness leads to inaccuracy.A method for calibrating the confocal volume is proposed in this paper.The new method is based on the basic content of the textbook,and the theoretical results and the feasibility are given in detail for the 3D-XRF mono-chromatic x-ray condition and the poly-chromatic x-ray condition.We obtain a set of experimental confirmation using the poly-chromatic x-ray tube in the laboratory.It is proved that the sensitivity factor of the 3D-XRF can be directly and accurately obtained in a real calibration process.