The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of interme...The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of intermediate state structure during nucleation and growth.In this work,the evolution process of bismuth nanoparticles induced by electron beam was revealed by in-situ transmission electron microscopy(TEM)at atomic scale.The experimental results demonstrate that the size,stable surface and crystallographic defect have important influences on the growth of Bi nanoparticles.Two non-classical growth paths including single crystal growth and polycrystalline combined growth,as well as,corresponding layer-by-layer growth mechanism along{012}stable crystal plane of Bi nanoparticles with dodecahedron structure were revealed by in-situ TEM directly.These results provide important guidance and a new approach for in-depth understanding of the nucleation and growth kinetics of nanoparticles.展开更多
Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a...Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a'butterfly pattern'is obtained around the micropipes by SAM.The RA image of the edge dislocations is theoretically simulated based on dislocation theory and the photoelastic principle.By comparing with the Raman spectrum,it is verified that the micropipes consist of edge dislocations.The different patterns of the RA images are due to the different orientations of the Burgers vectors.Besides,the strain distribution of the micropipes is also deduced.One can identify the dislocation type,the direction of the Burgers vector and the optical anisotropy from the RA image by using SAM.Therefore,SAM is an ideal tool to measure the optical anisotropy induced by the strain field around a defect.展开更多
Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic propertie...Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic properties and defect tolerance.However, the performance and stability of MHP-based devices are significantly influenced by their microstructures includingthe formation of defects, composition fluctuations, structural inhomogeneity, etc. Transmission electron microscopy(TEM) is a powerful tool for direct observation of microstructure at the atomic-scale resolution and has been used to correlatethe microstructure and performance of MHP-based devices. In this review, we highlight the application of TEMtechniques in revealing the microstructures of MHP thin films at the atomic scale. The results provide critical understandingof the performance of MHP devices and guide the design of strategies for improving the performance and stability ofMHP devices.展开更多
To address climate change and promote environmental sustainability,electrochemical energy conversion and storage systems emerge as promising alternative to fossil fuels,catering to the escalating demand for energy.Ach...To address climate change and promote environmental sustainability,electrochemical energy conversion and storage systems emerge as promising alternative to fossil fuels,catering to the escalating demand for energy.Achieving optimal energy efficiency and cost competitiveness in these systems requires the strategic design of electrocatalysts,coupled with a thorough comprehension of the underlying mechanisms and degradation behavior occurring during the electrocatalysis processes.Scanning electrochemical microscopy(SECM),an analytical technique for studying surface electrochemically,stands out as a powerful tool offering electrochemical insights.It possesses remarkable spatiotemporal resolution,enabling the visualization of the localized electrochemical activity and surface topography.This review compiles crucial research findings and recent breakthroughs in electrocatalytic processes utilizing the SECM methodology,specifically focusing on applications in electrolysis,fuel cells,and metal–oxygen batteries within the realm of energy conversion and storage systems.Commencing with an overview of each energy system,the review introduces the fundamental principles of SECM,and aiming to provide new perspectives and broadening the scope of applied research by describing the major research categories within SECM.展开更多
With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always...With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always been an urgent problem to be solved.To develop a safety-guaranteed battery,the characterization of the internal structure is indispensable,where electron microscopy plays a crucial role.Based on this,this paper summarizes the application of transmission electron microscopy(TEM)in battery safety,further concludes and analyzes the aspects of dendrite growth and solid electrolyte interface(SEI)formation that affect the safety of ion batteries,and emphasizes the importance of electron microscopy in battery safety research and the potential of these techniques to promote the future development of this field.These advanced electron microscopy techniques and their prospects are also discussed.展开更多
Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interact...Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interactions,and annihilations of quasi-and many-body particles,and ultimately to achieve the manipulation and engineering of exotic non-equilibrium quantum phases on the ultrasmall and ultrafast spatiotemporal scales.Given the inherent complexities arising from many-body dynamics,it therefore seeks a technique that has efficient and diverse detection degrees of freedom to study the underlying physics.By combining high-power femtosecond lasers with real-or momentum-space photoemission electron microscopy(PEEM),imaging excited state phenomena from multiple perspectives,including time,real space,energy,momentum,and spin,can be conveniently achieved,making it a unique technique in studying physics out of equilibrium.In this context,we overview the working principle and technical advances of the PEEM apparatus and the related laser systems,and survey key excited-state phenomena probed through this surface-sensitive methodology,including the ultrafast dynamics of electrons,excitons,plasmons,spins,etc.,in materials ranging from bulk and nano-structured metals and semiconductors to low-dimensional quantum materials.Through this review,one can further envision that time-resolved PEEM will open new avenues for investigating a variety of classical and quantum phenomena in a multidimensional parameter space,offering unprecedented and comprehensive insights into important questions in the field of condensed matter physics.展开更多
We report here the in situ electrochemical scanning tunneling microscopy(ECSTM) study of cobalt phthalocyanine(CoPc)-catalyzed O_(2) evolution reaction(OER) and the dynamics of CoPc-O_(2) dissociation.The self-assembl...We report here the in situ electrochemical scanning tunneling microscopy(ECSTM) study of cobalt phthalocyanine(CoPc)-catalyzed O_(2) evolution reaction(OER) and the dynamics of CoPc-O_(2) dissociation.The self-assembled CoPc monolayer is fabricated on Au(111) substrate and resolved by ECSTM in 0.1 M KOH electrolyte.The OH^(-)adsorption on CoPc prior to OER is observed in ECSTM images.During OER,the generated O_(2) adsorbed on Co Pc is observed in the CoPc monolayer.Potential step experiment is employed to monitor the desorption of OER-generated O_(2) from CoPc,which results in the decreasing surface coverage of CoPc-O_(2) with time.The rate constant of O_(2) desorption is evaluated through data fitting.The insights into the dynamics of Co-O_(2) dissociation at the molecular level via in situ imaging help understand the role of Co-O_(2) in oxygen reduction reaction(ORR) and OER.展开更多
Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed composit...Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed compositions,and varied locations.Transmission electron microscopy(TEM)as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys.In this short communication,we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs.By using advanced TEM techniques,not only the existence of SROs was confirmed,but also the effect of SROs on the deformation mechanism was clarified.Moreover,the perspective related to application of TEM techniques in HEAs are also discussed.展开更多
Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic struc...Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic structures is crucial for driving further the optimization of materials properties and developing novel functional materials.Here,by using in situ scanning tunneling microscopy,we report the atomic layer evolution and surface reconstruction on the cleaved thermoelectric material KCu_(4)Se_(3) for the first time.We clearly revealed each atomic layer,including the naturally cleaved K atomic layer,the intermediate Se^(2-)atomic layer,and the Se^(-)atomic layer that emerges in the thermodynamic-stable state.Departing from the maj ority of studies that predominantly concentrate on macroscopic measurements of the charge transport,our results reveal the coexistence of potassium disorder and complex reconstructed patterns of selenium,which potentially influences charge carrier and lattice dynamics.These results provide direct insight into the surface microstructures and evolution of KCu_(4)Se_(3),and shed useful light on designing functional materials with superior performance.展开更多
Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interact...Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams.展开更多
The morphology of antennae of Aphidoletes aphidimyza was observed with a scanning electron microscope. The results showed that both male and female were fourteen segmented, the male was approximately 2000 μm and the ...The morphology of antennae of Aphidoletes aphidimyza was observed with a scanning electron microscope. The results showed that both male and female were fourteen segmented, the male was approximately 2000 μm and the female was 1050μm. Six types of sensillae on the antenna were observed, viz. chaetica (Ch), trichoidea (Tr), basiconica (Ba), cavity (Ca), styloid (St) and circumfila (Ci) on the antennae of A. aphidimyza. Sensillae Ch had a long external-process, with a base surrounded by membranous sockets and a length of about 67.5 μm. Sensillae Tr were distally curved and inserted into a depression, 61.0μm long. Sensillae Ba were peg-like and 4.7μm long on the antennae. Sensillae Ca were pit-like in appearance and the diameter of the pit was 1.2μm. Sensilla St was found on the second sub-segment flagellum of the male antennae. The length of the sensilla was about 21 μm and the diameter was 1.5μm. The circurnfila, which are a unique type of sensilla found only on cecidomyiid antennae, formed loops around each of the antennal sub-segments, and were attached to the surface by a series of stalks. Sensilla St was only present on male antenna. The number of Ba and Tr was almost the same in both sexes. There were more Sensilla Ca on the male antenna than on the female, while there was more Ch on the female.展开更多
Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. H...Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. High angle annular dark field(HAADF) and annular bright field(ABF) imaging of the aberration-corrected STEM are widely used due to their high-resolution capabilities and easily interpretable image contrasts. However, HAADF mode of the STEM is still limited in detecting light elements due to the weak electron-scattering power. ABF mode of the STEM could detect light and heavy elements simultaneously, providing unprecedented opportunities for probing unknown structures of materials. Atomiclevel structure investigation of materials has been achieved by means of these imaging modes, which is invaluable in many fields for either improving properties of materials or developing new materials. This paper aims to provide a introduction of HAADF and ABF imaging techniques and reviews their applications in characterization of cathode materials, study of electrochemical reaction mechanisms, and exploring the effective design of lithium-ion batteries(LIBs). The future prospects of the STEM are also discussed.展开更多
The time domain entombment of bacteria by intratubular mineralization following orthograde canal obturation with mineral trioxide aggregate(MTA) was studied by scanning electron microscopy(SEM). Single-rooted huma...The time domain entombment of bacteria by intratubular mineralization following orthograde canal obturation with mineral trioxide aggregate(MTA) was studied by scanning electron microscopy(SEM). Single-rooted human premolars(n560) were instrumented to an apical size #50/0.06 using ProF ile and treated as follows: Group 1(n510) was filled with phosphate buffered saline(PBS); Group 2(n510) was incubated with Enterococcus faecalis for 3 weeks, and then filled with PBS; Group 3(n520) was obturated orthograde with a paste of OrthoM TA(BioM TA, Seoul, Korea) and PBS; and Group 4(n520) was incubated with E. faecalis for 3 weeks and then obturated with OrthoM TA–PBS paste. Following their treatments, the coronal openings were sealed with PBS-soaked cotton and intermediate restorative material(IRM), and the roots were then stored in PBS for 1, 2, 4, 8 or 16 weeks. After each incubation period, the roots were split and their dentin/MTA interfaces examined in both longitudinal and horizontal directions by SEM. There appeared to be an increase in intratubular mineralization over time in the OrthoM TA-filled roots(Groups 3 and 4). Furthermore, there was a gradual entombment of bacteria within the dentinal tubules in the E. faecalis inoculated MTA-filled roots(Group 4). Therefore, the orthograde obturation of root canals with OrthoM TA mixed with PBS may create a favorable environment for bacterial entombment by intratubular mineralization.展开更多
AIM:To compare bacterial biofilm colonization in lacrimal stents following external dacryocystorhinostomy(EX-DCR),endoscopic dacryocystorhinostomy(EN-DCR),and transcanalicular dacryocystorhinostomy(TC-DCR)with multidi...AIM:To compare bacterial biofilm colonization in lacrimal stents following external dacryocystorhinostomy(EX-DCR),endoscopic dacryocystorhinostomy(EN-DCR),and transcanalicular dacryocystorhinostomy(TC-DCR)with multidiode laser.METHODS:This prospective study included 30consecutive patients with nasolacrimal duct obstruction who underwent EXT-,EN-,or TC-DCR.Thirty removed lacrimal stent fragments and conjunctival samples were cultured.The lacrimal stent biofilms were examined by scanning electron microscopy(SEM).RESULTS:Eleven(36.7%)of the 30 lacrimal stent cultures were positive for aerobic bacteria(most commonly Staphylococcus epidermidis and Pseudomonas aeruginosa).However anaerobic bacteria and fungi were not identified in the lacrimal stent cultures.Twenty-seven(90%)patients had biofilmpositive lacrimal stents.The conjunctival culture positivity after the DCR,biofilm positivity on stents,the grade of biofilm colonization,and the presence of mucus and coccoid and rod-shaped organisms did not significantly differ between any of the groups(P】0.05).However,a significant difference was found when the SEM results were compared to the results of the lacrimal stent and conjunctival cultures(P【0.001).CONCLUSION:Type of dacryocystorhinostomy(DCR)surgery did not affect the biofilm colonization of the lacrimal stents.SEM also appears to be more precise than microbiological culture for evaluating the presence of biofilms on lacrimal stents.展开更多
Bone is an architecturally complex system that constantly undergoes structural and functional optimisation through renewal and repair.The scanning electron microscope (SEM) is among the most frequently used instrument...Bone is an architecturally complex system that constantly undergoes structural and functional optimisation through renewal and repair.The scanning electron microscope (SEM) is among the most frequently used instruments for examining bone.It offers the key advantage of very high spatial resolution coupled with a large depth of field and wide field of view.Interactions between incident electrons and atoms on the sample surface generate backscattered electrons,secondary electrons,and various other signals including X-rays that relay compositional and topographical information.Through selective removal or preservation of specific tissue components (organic,inorganic,cellular,vascular),their individual contribution(s) to the overall functional competence can be elucidated.With few restrictions on sample geometry and a variety of applicable sample-processing routes,a given sample may be conveniently adapted for multiple analytical methods.While a conventional SEM operates at high vacuum conditions that demand clean,dry,and electrically conductive samples,non-conductive materials (e.g.,bone) can be imaged without significant modification from the natural state using an environmental scanning electron microscope.This review highlights important insights gained into bone microstructure and pathophysiology,bone response to implanted biomaterials,elemental analysis,SEM in paleoarchaeology,3D imaging using focused ion beam techniques,correlative microscopy and in situ experiments.The capacity to image seamlessly across multiple length scales within the meso-micro-nano-continuum,the SEM lends itself to many unique and diverse applications,which attest to the versatility and user-friendly nature of this instrument for studying bone.Significant technological developments are anticipated for analysing bone using the SEM.展开更多
Ferroelectric polymer nanocomposites possess exceptional electric properties with respect to the two otherwise uniform phases,which is commonly attributed to the critical role of the matrix-particle interfacial region...Ferroelectric polymer nanocomposites possess exceptional electric properties with respect to the two otherwise uniform phases,which is commonly attributed to the critical role of the matrix-particle interfacial region.However,the structure-property correlation of the interface remains unestablished,and thus,the design of ferroelectric polymer nanocompos-ite has largely relied on the trial-and-error method.Here,a strategy that combines multi-mode scanning probe microscopy-based electrical charac-terization and nano-infrared spectroscopy is developed to unveil the local structure-property correlation of the interface in ferroelectric polymer nano-composites.The results show that the type of surface modifiers decorated on the nanoparticles can significantly influence the local polar-phase content and the piezoelectric effect of the polymer matrix surrounding the nano-particles.The strongly coupled polar-phase content and piezoelectric effect measured directly in the interfacial region as well as the computed bonding energy suggest that the property enhancement originates from the formation of hydrogen bond between the surface modifiers and the ferroelectric polymer.It is also directly detected that the local domain size of the ferroelectric polymer can impact the energy level and distribution of charge traps in the interfacial region and eventually influence the local dielectric strength.展开更多
Detection of sulfur-oxidizing bacteria has largely been dependent on targeted gene sequencing technology or traditional cell cultivation, which usually takes from days to months to carry out. This clearly does not mee...Detection of sulfur-oxidizing bacteria has largely been dependent on targeted gene sequencing technology or traditional cell cultivation, which usually takes from days to months to carry out. This clearly does not meet the requirements of analysis for time-sensitive samples and/or complicated environmental samples. Since energy-dispersive X-ray spectrometry(EDS) can be used to simultaneously detect multiple elements in a sample, including sulfur, with minimal sample treatment, this technology was applied to detect sulfur-oxidizing bacteria using their high sulfur content within the cell. This article describes the application of scanning electron microscopy imaging coupled with EDS mapping for quick detection of sulfur oxidizers in contaminated environmental water samples, with minimal sample handling. Scanning electron microscopy imaging revealed the existence of dense granules within the bacterial cells, while EDS identified large amounts of sulfur within them. EDS mapping localized the sulfur to these granules. Subsequent 16S rRNA gene sequencing showed that the bacteria detected in our samples belonged to the genus Chromatium, which are sulfur oxidizers. Thus, EDS mapping made it possible to identify sulfur oxidizers in environmental samples based on localized sulfur within their cells, within a short time(within 24 h of sampling). This technique has wide ranging applications for detection of sulfur bacteria in environmental water samples.展开更多
To gain further understanding of the luminescence properties of multiquantum wells and the factors affecting them on a microscopic level,cathodoluminescence combined with scanning transmission electron microscopy and ...To gain further understanding of the luminescence properties of multiquantum wells and the factors affecting them on a microscopic level,cathodoluminescence combined with scanning transmission electron microscopy and spectroscopy was used to measure the luminescence of In_(0.15)Ga_(0.85)N five-period multiquantum wells.The lattice-composition-energy relationship was established with the help of energy-dispersive x-ray spectroscopy,and the bandgaps of In_(0.15)Ga_(0.85)N and GaN in multiple quantum wells were extracted by electron energy loss spectroscopy to understand the features of cathodoluminescence spectra.The luminescence differences between different periods of multiquantum wells and the effects of defects such as composition fluctuation and dislocations on the luminescence of multiple quantum wells were revealed.Our study establishing the direct relationship between the atomic structure of In_(x)Ga_(1-x)N multiquantum wells and photoelectric properties provides useful information for nitride applications.展开更多
A novel biological small-diameter vascular graft was evaluated in a canine model. 3 cm long segments with 4 mm I.D. were implanted end-to-end in the carotid position of 12 dogs for 6 months. Color Doppler sonography w...A novel biological small-diameter vascular graft was evaluated in a canine model. 3 cm long segments with 4 mm I.D. were implanted end-to-end in the carotid position of 12 dogs for 6 months. Color Doppler sonography was performed at the first week post-operation, and angiography was then administered to 9 grafts at 4th week, 12th week and 24th week respectively to monitor the graft pantency and blood flow characteristics. Vascular samples containing the grafts were collected at 1st week, 8th week, 12th week and 24th week after implantation. Morphological changes of the grafts were observed by optical and scanning electron microscopic (SEM) studies and compared with that of the original prosthesis and the normal host vessel. All grafts were patent throughout the experiment except one graft. Histopathology and SEM demonstrated both a nearly complete inner capsule of varied thickness lining the graft luminal surface and connective tissue adventitia formation at one-week post-operation. The neointima became confluent at 8 weeks and then compact but had no signs of hyperplasia up to 12 weeks; meanwhile on the neointimal surface newly grown endothelial-like cells were migrating from the stoma to the middle portion. The grafts also illustrated endothelialization in many “islands” in the mid-segment luminal surface of the grafts. In addition, the closer distance the cells towards the stoma were, the more morphological similarity the cells with the normal endothelial were. Taken together, the biological vascular graft remained patent for 24 weeks as a carotid prosthesis, characterized by the early and complete neointima formation plus endothelialization starting before 12 weeks post grafting. Therefore, the graft seems suitable for reconstruction of vascular lesions in dogs. Further studies may be carried out to extend the graft application for the clinical use.展开更多
Scanning electron acoustic microscopy (SEAM) is a new technique for imasing and characterization ofthermal, elastic and pyroelectric property variations on a microscale resolution. The signal generation mechanisms and...Scanning electron acoustic microscopy (SEAM) is a new technique for imasing and characterization ofthermal, elastic and pyroelectric property variations on a microscale resolution. The signal generation mechanisms and the application of scanning electron acoustic microscopy in GalnAsSb alloy grown by MOCVD wereinvestigated. Defects below the surface of GalnAsSb alloy were found by SEAM images and cathodelumi-nescence. The results show that electronacoustic imaging has its own features over secondary electron imag-ing.展开更多
基金Funded by the National Natural Science Foundation of China(No.52103285)the 111 National Project(No.B20002)。
文摘The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of intermediate state structure during nucleation and growth.In this work,the evolution process of bismuth nanoparticles induced by electron beam was revealed by in-situ transmission electron microscopy(TEM)at atomic scale.The experimental results demonstrate that the size,stable surface and crystallographic defect have important influences on the growth of Bi nanoparticles.Two non-classical growth paths including single crystal growth and polycrystalline combined growth,as well as,corresponding layer-by-layer growth mechanism along{012}stable crystal plane of Bi nanoparticles with dodecahedron structure were revealed by in-situ TEM directly.These results provide important guidance and a new approach for in-depth understanding of the nucleation and growth kinetics of nanoparticles.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2018YFE0204001,2018YFA0209103,2016YFB0400101,and 2016YFB0402303)the National Natural Science Foundation of China(Grant Nos.61627822,61704121,61991430,and 62074036)Postdoctoral Research Program of Jiangsu Province(Grant No.2021K599C).
文摘Optical reflection anisotropy microscopy mappings of micropipe defects on the surface of a 4H-SiC single crystal are studied by the scanning anisotropy microscopy(SAM)system.The reflection anisotropy(RA)image with a'butterfly pattern'is obtained around the micropipes by SAM.The RA image of the edge dislocations is theoretically simulated based on dislocation theory and the photoelastic principle.By comparing with the Raman spectrum,it is verified that the micropipes consist of edge dislocations.The different patterns of the RA images are due to the different orientations of the Burgers vectors.Besides,the strain distribution of the micropipes is also deduced.One can identify the dislocation type,the direction of the Burgers vector and the optical anisotropy from the RA image by using SAM.Therefore,SAM is an ideal tool to measure the optical anisotropy induced by the strain field around a defect.
文摘Metal halide perovskites (MHPs) are excellent semiconductors that have led to breakthroughs in applications in thinfilmsolar cells, detectors, and light-emitting diodes due to their remarkable optoelectronic properties and defect tolerance.However, the performance and stability of MHP-based devices are significantly influenced by their microstructures includingthe formation of defects, composition fluctuations, structural inhomogeneity, etc. Transmission electron microscopy(TEM) is a powerful tool for direct observation of microstructure at the atomic-scale resolution and has been used to correlatethe microstructure and performance of MHP-based devices. In this review, we highlight the application of TEMtechniques in revealing the microstructures of MHP thin films at the atomic scale. The results provide critical understandingof the performance of MHP devices and guide the design of strategies for improving the performance and stability ofMHP devices.
基金supported by a characterization platform for advanced materials funded by the Korea Research Institute of Standards and Science(KRISS-2023-GP2023-0014)the KRISS(Korea Research Institute of Standards and Science)MPI Lab.program。
文摘To address climate change and promote environmental sustainability,electrochemical energy conversion and storage systems emerge as promising alternative to fossil fuels,catering to the escalating demand for energy.Achieving optimal energy efficiency and cost competitiveness in these systems requires the strategic design of electrocatalysts,coupled with a thorough comprehension of the underlying mechanisms and degradation behavior occurring during the electrocatalysis processes.Scanning electrochemical microscopy(SECM),an analytical technique for studying surface electrochemically,stands out as a powerful tool offering electrochemical insights.It possesses remarkable spatiotemporal resolution,enabling the visualization of the localized electrochemical activity and surface topography.This review compiles crucial research findings and recent breakthroughs in electrocatalytic processes utilizing the SECM methodology,specifically focusing on applications in electrolysis,fuel cells,and metal–oxygen batteries within the realm of energy conversion and storage systems.Commencing with an overview of each energy system,the review introduces the fundamental principles of SECM,and aiming to provide new perspectives and broadening the scope of applied research by describing the major research categories within SECM.
基金supported by the National Natural Science Foundation of China(No.22209027)the Shenzhen Science and Technology Program(No.JCYJ20220530142806015 and No.JCYJ20220818101008018)+1 种基金the Shenzhen“Pengcheng Peacock Program’the Tsinghua SIGS Cross-disciplinary Research and Innovation Fund(No.JC2022002)。
文摘With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always been an urgent problem to be solved.To develop a safety-guaranteed battery,the characterization of the internal structure is indispensable,where electron microscopy plays a crucial role.Based on this,this paper summarizes the application of transmission electron microscopy(TEM)in battery safety,further concludes and analyzes the aspects of dendrite growth and solid electrolyte interface(SEI)formation that affect the safety of ion batteries,and emphasizes the importance of electron microscopy in battery safety research and the potential of these techniques to promote the future development of this field.These advanced electron microscopy techniques and their prospects are also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.12374223)Shenzhen Science and Technology Program(Grant No.20231117151322001).
文摘Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research.It aims to unravel the intricate processes involving the excitations,interactions,and annihilations of quasi-and many-body particles,and ultimately to achieve the manipulation and engineering of exotic non-equilibrium quantum phases on the ultrasmall and ultrafast spatiotemporal scales.Given the inherent complexities arising from many-body dynamics,it therefore seeks a technique that has efficient and diverse detection degrees of freedom to study the underlying physics.By combining high-power femtosecond lasers with real-or momentum-space photoemission electron microscopy(PEEM),imaging excited state phenomena from multiple perspectives,including time,real space,energy,momentum,and spin,can be conveniently achieved,making it a unique technique in studying physics out of equilibrium.In this context,we overview the working principle and technical advances of the PEEM apparatus and the related laser systems,and survey key excited-state phenomena probed through this surface-sensitive methodology,including the ultrafast dynamics of electrons,excitons,plasmons,spins,etc.,in materials ranging from bulk and nano-structured metals and semiconductors to low-dimensional quantum materials.Through this review,one can further envision that time-resolved PEEM will open new avenues for investigating a variety of classical and quantum phenomena in a multidimensional parameter space,offering unprecedented and comprehensive insights into important questions in the field of condensed matter physics.
基金National Key R&D Program of China (2021YFA1501002)National Natural Science Foundation of China (22132007)。
文摘We report here the in situ electrochemical scanning tunneling microscopy(ECSTM) study of cobalt phthalocyanine(CoPc)-catalyzed O_(2) evolution reaction(OER) and the dynamics of CoPc-O_(2) dissociation.The self-assembled CoPc monolayer is fabricated on Au(111) substrate and resolved by ECSTM in 0.1 M KOH electrolyte.The OH^(-)adsorption on CoPc prior to OER is observed in ECSTM images.During OER,the generated O_(2) adsorbed on Co Pc is observed in the CoPc monolayer.Potential step experiment is employed to monitor the desorption of OER-generated O_(2) from CoPc,which results in the decreasing surface coverage of CoPc-O_(2) with time.The rate constant of O_(2) desorption is evaluated through data fitting.The insights into the dynamics of Co-O_(2) dissociation at the molecular level via in situ imaging help understand the role of Co-O_(2) in oxygen reduction reaction(ORR) and OER.
基金financially supported by the National Natural Science Foundation of China(Nos.51971017,52271003,52071024,52001184,and 52101188)the National Science Fund for distinguished Young Scholars,China(No.52225103)+3 种基金the Funds for Creative Research Groups of China(No.51921001)the National Key Research and Development Program of China(No.2022YFB4602101)the Projects of International Cooperation and Exchanges NSFC(No.52061135207)the Fundamental Research Funds for the Central Universities,China(No.FRF-TP-22-130A1)。
文摘Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed compositions,and varied locations.Transmission electron microscopy(TEM)as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys.In this short communication,we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs.By using advanced TEM techniques,not only the existence of SROs was confirmed,but also the effect of SROs on the deformation mechanism was clarified.Moreover,the perspective related to application of TEM techniques in HEAs are also discussed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12374196,92165201,11634011,and 22109153)the Innovation Program for Quantum Science and Technology (Grant No.2021ZD0302800)+4 种基金the CAS Project for Young Scientists in Basic Research (Grant No.YSBR-046)the Fundamental Research Funds for the Central Universities (Grant Nos.WK3510000006 and WK3430000003)the Fund of Anhui Initiative in Quantum Information Technologies (Grant No.AHY170000)the University Synergy Innovation Program of Anhui Province,China (Grant No.GXXT-2022-008)the National Synchrotron Radiation Laboratory Joint Funds of University of Science and Technology of China (Grant No.KY2060000241)。
文摘Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic structures is crucial for driving further the optimization of materials properties and developing novel functional materials.Here,by using in situ scanning tunneling microscopy,we report the atomic layer evolution and surface reconstruction on the cleaved thermoelectric material KCu_(4)Se_(3) for the first time.We clearly revealed each atomic layer,including the naturally cleaved K atomic layer,the intermediate Se^(2-)atomic layer,and the Se^(-)atomic layer that emerges in the thermodynamic-stable state.Departing from the maj ority of studies that predominantly concentrate on macroscopic measurements of the charge transport,our results reveal the coexistence of potassium disorder and complex reconstructed patterns of selenium,which potentially influences charge carrier and lattice dynamics.These results provide direct insight into the surface microstructures and evolution of KCu_(4)Se_(3),and shed useful light on designing functional materials with superior performance.
基金supported by the National Natural Science Foundation of China (Grant Nos.U22A6005 and 12074408)the National Key Research and Development Program of China (Grant No.2021YFA1301502)+7 种基金Guangdong Major Scientific Research Project (Grant No.2018KZDXM061)Youth Innovation Promotion Association of CAS (Grant No.2021009)Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant Nos.YJKYYQ20200055,ZDKYYQ2017000,and 22017BA10)Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos.XDB25000000 and XDB33010100)Beijing Municipal Science and Technology Major Project (Grant No.Z201100001820006)IOP Hundred Talents Program (Grant No.Y9K5051)Postdoctoral Support Program of China (Grant No.2020M670501)the Synergetic Extreme Condition User Facility (SECUF)。
文摘Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams.
文摘The morphology of antennae of Aphidoletes aphidimyza was observed with a scanning electron microscope. The results showed that both male and female were fourteen segmented, the male was approximately 2000 μm and the female was 1050μm. Six types of sensillae on the antenna were observed, viz. chaetica (Ch), trichoidea (Tr), basiconica (Ba), cavity (Ca), styloid (St) and circumfila (Ci) on the antennae of A. aphidimyza. Sensillae Ch had a long external-process, with a base surrounded by membranous sockets and a length of about 67.5 μm. Sensillae Tr were distally curved and inserted into a depression, 61.0μm long. Sensillae Ba were peg-like and 4.7μm long on the antennae. Sensillae Ca were pit-like in appearance and the diameter of the pit was 1.2μm. Sensilla St was found on the second sub-segment flagellum of the male antennae. The length of the sensilla was about 21 μm and the diameter was 1.5μm. The circurnfila, which are a unique type of sensilla found only on cecidomyiid antennae, formed loops around each of the antennal sub-segments, and were attached to the surface by a series of stalks. Sensilla St was only present on male antenna. The number of Ba and Tr was almost the same in both sexes. There were more Sensilla Ca on the male antenna than on the female, while there was more Ch on the female.
基金supported by the National Basic Research Program of China(Grant No.2014CB921002)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB07030200)the National Natural Science Foundation of China(Grant Nos.51522212,51421002,and 51672307)
文摘Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. High angle annular dark field(HAADF) and annular bright field(ABF) imaging of the aberration-corrected STEM are widely used due to their high-resolution capabilities and easily interpretable image contrasts. However, HAADF mode of the STEM is still limited in detecting light elements due to the weak electron-scattering power. ABF mode of the STEM could detect light and heavy elements simultaneously, providing unprecedented opportunities for probing unknown structures of materials. Atomiclevel structure investigation of materials has been achieved by means of these imaging modes, which is invaluable in many fields for either improving properties of materials or developing new materials. This paper aims to provide a introduction of HAADF and ABF imaging techniques and reviews their applications in characterization of cathode materials, study of electrochemical reaction mechanisms, and exploring the effective design of lithium-ion batteries(LIBs). The future prospects of the STEM are also discussed.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0086835: Dr K Y Kum)the Ministry of Science, ICT and Future Planning (2011-0014231: Dr S W Chang)supported by a grant from the Kyung Hee University in 2013 (KHU-20131045)
文摘The time domain entombment of bacteria by intratubular mineralization following orthograde canal obturation with mineral trioxide aggregate(MTA) was studied by scanning electron microscopy(SEM). Single-rooted human premolars(n560) were instrumented to an apical size #50/0.06 using ProF ile and treated as follows: Group 1(n510) was filled with phosphate buffered saline(PBS); Group 2(n510) was incubated with Enterococcus faecalis for 3 weeks, and then filled with PBS; Group 3(n520) was obturated orthograde with a paste of OrthoM TA(BioM TA, Seoul, Korea) and PBS; and Group 4(n520) was incubated with E. faecalis for 3 weeks and then obturated with OrthoM TA–PBS paste. Following their treatments, the coronal openings were sealed with PBS-soaked cotton and intermediate restorative material(IRM), and the roots were then stored in PBS for 1, 2, 4, 8 or 16 weeks. After each incubation period, the roots were split and their dentin/MTA interfaces examined in both longitudinal and horizontal directions by SEM. There appeared to be an increase in intratubular mineralization over time in the OrthoM TA-filled roots(Groups 3 and 4). Furthermore, there was a gradual entombment of bacteria within the dentinal tubules in the E. faecalis inoculated MTA-filled roots(Group 4). Therefore, the orthograde obturation of root canals with OrthoM TA mixed with PBS may create a favorable environment for bacterial entombment by intratubular mineralization.
基金Supported by Institutional Review Board of Bagcilar Education and Research Hospital,Istanbul,Turkey(No.1852)
文摘AIM:To compare bacterial biofilm colonization in lacrimal stents following external dacryocystorhinostomy(EX-DCR),endoscopic dacryocystorhinostomy(EN-DCR),and transcanalicular dacryocystorhinostomy(TC-DCR)with multidiode laser.METHODS:This prospective study included 30consecutive patients with nasolacrimal duct obstruction who underwent EXT-,EN-,or TC-DCR.Thirty removed lacrimal stent fragments and conjunctival samples were cultured.The lacrimal stent biofilms were examined by scanning electron microscopy(SEM).RESULTS:Eleven(36.7%)of the 30 lacrimal stent cultures were positive for aerobic bacteria(most commonly Staphylococcus epidermidis and Pseudomonas aeruginosa).However anaerobic bacteria and fungi were not identified in the lacrimal stent cultures.Twenty-seven(90%)patients had biofilmpositive lacrimal stents.The conjunctival culture positivity after the DCR,biofilm positivity on stents,the grade of biofilm colonization,and the presence of mucus and coccoid and rod-shaped organisms did not significantly differ between any of the groups(P】0.05).However,a significant difference was found when the SEM results were compared to the results of the lacrimal stent and conjunctival cultures(P【0.001).CONCLUSION:Type of dacryocystorhinostomy(DCR)surgery did not affect the biofilm colonization of the lacrimal stents.SEM also appears to be more precise than microbiological culture for evaluating the presence of biofilms on lacrimal stents.
基金Financial support is acknowledged from the Swedish Research Council(K2015-52X-09495-28-4)Svenska Sallskapet for Medicinsk Forskning(SSMF)postdoctoral scholarship,the ALF/LUA Research Grant(ALFGBG-448851)
文摘Bone is an architecturally complex system that constantly undergoes structural and functional optimisation through renewal and repair.The scanning electron microscope (SEM) is among the most frequently used instruments for examining bone.It offers the key advantage of very high spatial resolution coupled with a large depth of field and wide field of view.Interactions between incident electrons and atoms on the sample surface generate backscattered electrons,secondary electrons,and various other signals including X-rays that relay compositional and topographical information.Through selective removal or preservation of specific tissue components (organic,inorganic,cellular,vascular),their individual contribution(s) to the overall functional competence can be elucidated.With few restrictions on sample geometry and a variety of applicable sample-processing routes,a given sample may be conveniently adapted for multiple analytical methods.While a conventional SEM operates at high vacuum conditions that demand clean,dry,and electrically conductive samples,non-conductive materials (e.g.,bone) can be imaged without significant modification from the natural state using an environmental scanning electron microscope.This review highlights important insights gained into bone microstructure and pathophysiology,bone response to implanted biomaterials,elemental analysis,SEM in paleoarchaeology,3D imaging using focused ion beam techniques,correlative microscopy and in situ experiments.The capacity to image seamlessly across multiple length scales within the meso-micro-nano-continuum,the SEM lends itself to many unique and diverse applications,which attest to the versatility and user-friendly nature of this instrument for studying bone.Significant technological developments are anticipated for analysing bone using the SEM.
基金supported by the National Natural Science Foundation of China(Nos.51922056 and 51921005).
文摘Ferroelectric polymer nanocomposites possess exceptional electric properties with respect to the two otherwise uniform phases,which is commonly attributed to the critical role of the matrix-particle interfacial region.However,the structure-property correlation of the interface remains unestablished,and thus,the design of ferroelectric polymer nanocompos-ite has largely relied on the trial-and-error method.Here,a strategy that combines multi-mode scanning probe microscopy-based electrical charac-terization and nano-infrared spectroscopy is developed to unveil the local structure-property correlation of the interface in ferroelectric polymer nano-composites.The results show that the type of surface modifiers decorated on the nanoparticles can significantly influence the local polar-phase content and the piezoelectric effect of the polymer matrix surrounding the nano-particles.The strongly coupled polar-phase content and piezoelectric effect measured directly in the interfacial region as well as the computed bonding energy suggest that the property enhancement originates from the formation of hydrogen bond between the surface modifiers and the ferroelectric polymer.It is also directly detected that the local domain size of the ferroelectric polymer can impact the energy level and distribution of charge traps in the interfacial region and eventually influence the local dielectric strength.
基金Supported by the Basic Scientific Fund for National Public Research Institutes of China(Nos.GY02-2011T10,2015P07)the Qingdao Talent Program(No.13-CX-20)+1 种基金the National Natural Science Foundation of China(Nos.31100567,41176061)the National Natural Science Foundation for Creative Groups(No.41521064)
文摘Detection of sulfur-oxidizing bacteria has largely been dependent on targeted gene sequencing technology or traditional cell cultivation, which usually takes from days to months to carry out. This clearly does not meet the requirements of analysis for time-sensitive samples and/or complicated environmental samples. Since energy-dispersive X-ray spectrometry(EDS) can be used to simultaneously detect multiple elements in a sample, including sulfur, with minimal sample treatment, this technology was applied to detect sulfur-oxidizing bacteria using their high sulfur content within the cell. This article describes the application of scanning electron microscopy imaging coupled with EDS mapping for quick detection of sulfur oxidizers in contaminated environmental water samples, with minimal sample handling. Scanning electron microscopy imaging revealed the existence of dense granules within the bacterial cells, while EDS identified large amounts of sulfur within them. EDS mapping localized the sulfur to these granules. Subsequent 16S rRNA gene sequencing showed that the bacteria detected in our samples belonged to the genus Chromatium, which are sulfur oxidizers. Thus, EDS mapping made it possible to identify sulfur oxidizers in environmental samples based on localized sulfur within their cells, within a short time(within 24 h of sampling). This technique has wide ranging applications for detection of sulfur bacteria in environmental water samples.
基金Project supported by the National Key R&D Program of China (Grant No. 2019YFA0708202)the National Natural Science Foundation of China (Grant Nos. 11974023, 52021006, 61974139, 12074369, and 12104017)+1 种基金the “2011 Program” from the Peking–Tsinghua–IOP Collaborative Innovation Center of Quantum Matterthe Youth Supporting Program of Institute of Semiconductors
文摘To gain further understanding of the luminescence properties of multiquantum wells and the factors affecting them on a microscopic level,cathodoluminescence combined with scanning transmission electron microscopy and spectroscopy was used to measure the luminescence of In_(0.15)Ga_(0.85)N five-period multiquantum wells.The lattice-composition-energy relationship was established with the help of energy-dispersive x-ray spectroscopy,and the bandgaps of In_(0.15)Ga_(0.85)N and GaN in multiple quantum wells were extracted by electron energy loss spectroscopy to understand the features of cathodoluminescence spectra.The luminescence differences between different periods of multiquantum wells and the effects of defects such as composition fluctuation and dislocations on the luminescence of multiple quantum wells were revealed.Our study establishing the direct relationship between the atomic structure of In_(x)Ga_(1-x)N multiquantum wells and photoelectric properties provides useful information for nitride applications.
基金Hi-tech Research and Development Program of ChinaGrant number:863 program#2006AA03Z441+1 种基金Guangdong Province Scienceand Technology Supporting ProgramGrant number:Project#2006B35830001
文摘A novel biological small-diameter vascular graft was evaluated in a canine model. 3 cm long segments with 4 mm I.D. were implanted end-to-end in the carotid position of 12 dogs for 6 months. Color Doppler sonography was performed at the first week post-operation, and angiography was then administered to 9 grafts at 4th week, 12th week and 24th week respectively to monitor the graft pantency and blood flow characteristics. Vascular samples containing the grafts were collected at 1st week, 8th week, 12th week and 24th week after implantation. Morphological changes of the grafts were observed by optical and scanning electron microscopic (SEM) studies and compared with that of the original prosthesis and the normal host vessel. All grafts were patent throughout the experiment except one graft. Histopathology and SEM demonstrated both a nearly complete inner capsule of varied thickness lining the graft luminal surface and connective tissue adventitia formation at one-week post-operation. The neointima became confluent at 8 weeks and then compact but had no signs of hyperplasia up to 12 weeks; meanwhile on the neointimal surface newly grown endothelial-like cells were migrating from the stoma to the middle portion. The grafts also illustrated endothelialization in many “islands” in the mid-segment luminal surface of the grafts. In addition, the closer distance the cells towards the stoma were, the more morphological similarity the cells with the normal endothelial were. Taken together, the biological vascular graft remained patent for 24 weeks as a carotid prosthesis, characterized by the early and complete neointima formation plus endothelialization starting before 12 weeks post grafting. Therefore, the graft seems suitable for reconstruction of vascular lesions in dogs. Further studies may be carried out to extend the graft application for the clinical use.
文摘Scanning electron acoustic microscopy (SEAM) is a new technique for imasing and characterization ofthermal, elastic and pyroelectric property variations on a microscale resolution. The signal generation mechanisms and the application of scanning electron acoustic microscopy in GalnAsSb alloy grown by MOCVD wereinvestigated. Defects below the surface of GalnAsSb alloy were found by SEAM images and cathodelumi-nescence. The results show that electronacoustic imaging has its own features over secondary electron imag-ing.