In this article, four kinds of optical emission spectroscopic methods of determining electron temperature are used to investigate the relationship between electron temperature and pressure in the cylindrical plasmas o...In this article, four kinds of optical emission spectroscopic methods of determining electron temperature are used to investigate the relationship between electron temperature and pressure in the cylindrical plasmas of dc glow discharges at low pressures in laboratory by measuring the relative intensities of ArI lines at various pressures. These methods are developed respectively on the basis of the Fermi-Dirac model, corona model, and two kinds of electron collision cross section models according to the kinetic analysis. Their theoretical bases and the conditions to which they are applicable are reviewed, and their calculation results and fitting errors are compared with each other. The investigation has indicated that the electron temperatures obtained by the four methods become consistent with each other when the pressure increases in the low pressure argon plasmas.展开更多
As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and elec...As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering(LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5?×10^19m^-3 to7.1?×10^20m^-3 and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison,an optical emission spectroscopy(OES) system was established as well. The results showed that the electron excitation temperature(configuration temperature) measured by OES is significantly higher than the electron temperature(kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium(LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma.展开更多
Two curved crystal spectrometers are set up on the "QiangGuang-1" generator to measure the z-pinch plasma spectra emitted from planar aluminum wire array loads. Kodak Biomax-MS film and an IRD AXUVHS5# array are emp...Two curved crystal spectrometers are set up on the "QiangGuang-1" generator to measure the z-pinch plasma spectra emitted from planar aluminum wire array loads. Kodak Biomax-MS film and an IRD AXUVHS5# array are employed to record time-integrated and time-resolved free-bound radiation, respectively. The photon energy recorded by each detector is ascertained by using the L-shell lines of molybdenum plasma. Based on the exponential relation between the continuum power and photon energies, the aluminum plasma electron temperatures are measured. For the time-integrated diagnosis, several "bright spots" indicate electron temperatures between (450 eV- 520 eV) ± 35%. And for the time-resolved ones, the result shows that the electron temperature reaches about 800 eV±30% at peak power. The system satisfies the demand of z-pinch plasma electron temperature diagnosis on a - 1 MA facility.展开更多
Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development...Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development process of a return stroke of ground flash, the intensity of continuous radiation spectrum is separated on the basis of the spectrums with obviously different luminous intensity at two moments. The electron temperature of the lightning discharge channel is obtained through the curve fitting of the continuous spectrum intensity. It is found that electron temperature increases with the increase of wavelength and begins to reduce after the peak. The peak temperature of the two spectra is close to 25 000 K. To be compared with the result of discrete spectrum, the electron temperature is fitted by the O I line and N II line of the spectrum respectively. The comparison shows that the high temperature value is in good agreement with the temperature of the lightning core current channel obtained from the ion line information, and the low temperature at the high band closes to the calculation result of the atomic line, at a low band is lower than the calculation of the atomic line, which reflects the temperature of the luminous channel of the outer corona.展开更多
A new edge tangential multi-energy soft x-ray(ME-SXR) diagnostic with high temporal(≤ 0.1 ms) and spatial(~1 cm) resolution has been developed for a variety of physics topics studies in the EAST tokamak plasma....A new edge tangential multi-energy soft x-ray(ME-SXR) diagnostic with high temporal(≤ 0.1 ms) and spatial(~1 cm) resolution has been developed for a variety of physics topics studies in the EAST tokamak plasma. The fast edge electron temperature profile(approximately from r a~ 0.6 to the scrape-off layer) is investigated using ME-SXR diagnostic system. The data process was performed by the ideal ‘multi-foil' technique, with no priori assumptions of plasma profiles. Reconstructed ME-SXR emissivity profiles for a variety of EAST experimental scenarios are presented here for the first time. The applications of the ME-SXR for study of the effects of resonant magnetic perturbation on edge localized modes and the first time neon radiating divertor experiment in EAST are also presented in this work. It has been found that neon impurity can suppress the 2/1 tearing mode and trigger a 3/1 MHD mode.展开更多
In this paper, a two-dimensional physical model is established in a Hall thruster sheath region to investigate the influences of the electron temperature and the propellant on the sheath potential drop and the seconda...In this paper, a two-dimensional physical model is established in a Hall thruster sheath region to investigate the influences of the electron temperature and the propellant on the sheath potential drop and the secondary electron emission in the Hall thruster, by the particle-in-cell (PIC) method. The numerical results show that when the electron temperature is relatively low, the change of sheath potential drop is relatively large, the surface potential maintains a stable value and the stability of the sheath is good. When the electron temperature is relatively high, the surface potential maintains a persistent oscillation, and the stability of the sheath reduces. As the electron temperature increases, the secondary electron emission coefficient on the wall increases. For three kinds of propellants (At, Kr, and Xe), as the ion mass increases the sheath potentials and the secondary electron emission coefficients reduce in sequence.展开更多
Effects of electron temperature on dielectric function and localization of laser beams in underdense collisional plasmas are investigated. Simulation results show that the electron temperature has a strong effect on t...Effects of electron temperature on dielectric function and localization of laser beams in underdense collisional plasmas are investigated. Simulation results show that the electron temperature has a strong effect on the dielectric constant and the laser beam localization. It is observed that due to the influence of the electron temperature, the dielectric function presents some interesting and complicated nonlinear variations, and gives rise to the laser beam lo- calization. Moreover, the amplitudes of the beam width and the beam intensity are subjected to continuously oscillatory variation in the region of localization. In addition, the effects of several parameters on the dielectric function and the beam localization are discussed.展开更多
We measured electron temperatures through a hollow cathode-type discharge tube using several different floating probe methods. This method detected a shift in the floating potential when an AC voltage was applied to a...We measured electron temperatures through a hollow cathode-type discharge tube using several different floating probe methods. This method detected a shift in the floating potential when an AC voltage was applied to a probe through an intermediary blocking capacitor. The shift in the floating potential is described as a function of the electron temperature and the applied AC voltage. In this study, the effects of the frequency and waveform on the electron temperatures were systematically investigated. The electron temperature measured when using the floating probe method with applied sinusoidal and triangular voltages was lower than that measured with an applied rectangular voltage.The value in the high frequency range was close to that of the tail electron temperature.展开更多
The reliability of diagnostic systems in tokamak plasma is of great significance for physics researches or fusion reactor.When some diagnostics fail to detect information about the plasma status,such as electron tempe...The reliability of diagnostic systems in tokamak plasma is of great significance for physics researches or fusion reactor.When some diagnostics fail to detect information about the plasma status,such as electron temperature,they can also be obtained by another method:fitted by other diagnostic signals through machine learning.The paper herein is based on a machine learning method to predict electron temperature,in case the diagnostic systems fail to detect plasma temperature.The fully-connected neural network,utilizing back propagation with two hidden layers,is utilized to estimate plasma electron temperature approximately on the J-TEXT.The input parameters consist of soft x-ray emission intensity,electron density,plasma current,loop voltage,and toroidal magnetic field,while the targets are signals of electron temperature from electron cyclotron emission and x-ray imaging crystal spectrometer.Therefore,the temperature profile is reconstructed by other diagnostic signals,and the average errors are within 5%.In addition,generalized regression neural network can also achieve this function to estimate the temperature profile with similar accuracy.Predicting electron temperature by neural network reveals that machine learning can be used as backup means for plasma information so as to enhance the reliability of diagnostics.展开更多
In order to estimate the electron temperature soft x-ray imaging diagnostics using a double filter technique has been developed in the HT-7 tokamak. The chosen thicknesses of the Be foil are 12.5 μm and 70 μm, respe...In order to estimate the electron temperature soft x-ray imaging diagnostics using a double filter technique has been developed in the HT-7 tokamak. The chosen thicknesses of the Be foil are 12.5 μm and 70 μm, respectively. In this article both the main design of the diagnostic configuration and the method to estimate the electron temperature are presented. The results agree with those estimated from the soft x-ray pulse height analyzer (PHA). The main causes of systematic error have also been investigated.展开更多
This study presents a novel floating probe method to measure electron temperatures using a hollow cathode-type discharge tube. The proposed method detects a shift in the floating potential when an AC voltage is applie...This study presents a novel floating probe method to measure electron temperatures using a hollow cathode-type discharge tube. The proposed method detects a shift in the floating potential when an AC voltage is applied to a probe through an intermediary blocking capacitor. The shift in the floating potential is described as a function of the electron temperature and the applied AC voltage. The floating probe method is simpler than the Langmuir probe method because it does not require the measurement of volt-ampere characteristics. As the input AC voltage increases, the electron temperature converges. The electron temperature measured using the floating probe method with an applied sinusoidal voltage shows a value close to the first (tail) electron temperature in the range of the floating potential.展开更多
Data analysis on tokamak plasmas is mainly based on various diagnostic systems,which are usually modularized and independent of each other.This leads to a large amount of data not being fully and effectively exploited...Data analysis on tokamak plasmas is mainly based on various diagnostic systems,which are usually modularized and independent of each other.This leads to a large amount of data not being fully and effectively exploited so that it is not conducive to revealing the deep physical mechanism.In this work,Bayesian probability inference with machine learning methods have been applied to the electron cyclotron emission and Thomson scattering diagnostic systems on HL-2A/2M,and the effects of integrated data analysis(IDA)on the electron temperature of HL-2A with Bayesian probability inference are demonstrated.A program is developed to infer the whole electron temperature profile with a confidence interval,and the program can be applied in online analysis.The IDA results show that the full profile of the electron temperature can be obtained and the diagnostic information is more comprehensive and abundant with IDA.The inference models for electron temperature analysis are established and the developed programs will serve as an experimental data analysis tool for HL-2A/2M in the near future.展开更多
In recent EAST experiments,current profile broadening characterized by reduced internal inductance has been achieved by utilizing radio-frequency current drives(RFCD).In contrast to previous density scan experiments,w...In recent EAST experiments,current profile broadening characterized by reduced internal inductance has been achieved by utilizing radio-frequency current drives(RFCD).In contrast to previous density scan experiments,which showed an outward shift of the current density profile of lower hybrid current drive(LHCD)in higher plasma density,the core electron temperature(T_(e)(0))is found to affect the LHCD current profile as well.According to equilibrium reconstruction,a significant increase in on-axis safety factor(q0)from 2.05 to 3.41 is observed by careful arrangement of RFCD.Simulations using ray-tracing code GENRAY and Fokker–Planck code CQL3D have been performed to thoroughly analyze the LHCD current profile,revealing the sensitivity of the LHCD current profile to T_(e)(0).The LHCD current density tends to accumulate in the plasma core with higher current drive efficiency benefiting from higher T_(e)(0).With a lower T_(e)(0),the LHCD current profile broadens due to off-axis deposition of power density.The sensitivity of the power deposition and current profile of LHCD to T_(e)(0)provides a promising way to effectively optimize current profile via control of the core electron temperature.展开更多
Electron thermal transport is one of the most complex processes in fusionplasmas. It is generally described by a simple thermal diffusivity in transport analyses ofdischarges, but there is evidence of critical gradien...Electron thermal transport is one of the most complex processes in fusionplasmas. It is generally described by a simple thermal diffusivity in transport analyses ofdischarges, but there is evidence of critical gradient effects with moderate stiffness. By analyzingperiodic perturbations to an equilibrium, one canmeasure the variations in electron energy flux andelectron temperature gradient over the perturbation cycle, obtaining the flux as a function ofgradient over the range of parameters generated by the perturbation. Although time-dependenttransport analysis is very sensitive to noise in the input data, averaging over many cycles of aperiodic perturbation can provide data of sufficient quality. The analyses presented here are basedon the ECE temperature data with high spatial and temporal resolution and full profile coverage onDIII-D for sawteeth and modulated ECH heating.展开更多
The fluctuation of the electron temperature has been measured by using the electron cyclotron emission imaging in the Hefei Tokamak-7 (HT-7) plasma. The electron temperature fluctuation with a broadband spectrum sho...The fluctuation of the electron temperature has been measured by using the electron cyclotron emission imaging in the Hefei Tokamak-7 (HT-7) plasma. The electron temperature fluctuation with a broadband spectrum shows that it propagates in the electron diamagnetic drift direction, and the mean poloidal wave-number kθ is calculated to be about 1.58cm^-1, or k^-θρs ≈ 0.34. It indicates that the fluctuation should come from the electron drift wave turbulence. The linear global scaling of the electron temperature fluctuation with the gradient of electron temperature is consistent with the mixing length scale qualitatively. Evolution of spectrum of the fluctuation during the sawtooth oscillation phases is investigated, and the fluctuation is found to increase with the gradient of electron temperature increasing during most phases of the sawtooth oscillation. The results indicate that the electron temperature gradient is probably the driver of the fluctuation enhancement. The steady heat flux driven by electron temperature fluctuation is estimated and compared with the results from power balance estimation.展开更多
A gyrokinetic model with integral eigenmode equations is developed based on the local equilibrium of shaped tokamak plasmas. Effects of main geometric parameters (finite aspect ratio, elongation, triangularity, and S...A gyrokinetic model with integral eigenmode equations is developed based on the local equilibrium of shaped tokamak plasmas. Effects of main geometric parameters (finite aspect ratio, elongation, triangularity, and Shafranov shift gradient) on the electrostatic electron temper- ature gradient (ETG) driven modes are investigated numerically. It is found that the finite aspect ratio has a general stabilizing effect, while the elongation can be either stabilizing or destabilizing, depending on the poloidal wavelength of the mode and other parameters. It is shown that a low aspect ratio enhances the stabilizing effect of elongation, and weakens its destabilizing effect as well.展开更多
Under coronal conditions, the steady state rate-equations are used to calculate the inter-stage line ratios between Li-like ls22p(2P3/2)→ls22s(2S1/2) and He-like ls2p(1P1)→1s2(1S0) transitions for Ti in the electron...Under coronal conditions, the steady state rate-equations are used to calculate the inter-stage line ratios between Li-like ls22p(2P3/2)→ls22s(2S1/2) and He-like ls2p(1P1)→1s2(1S0) transitions for Ti in the electronic temperature ranges from 0.1keV to 20 keV. The results show that the temperature sensitivities are higher at the electronic temperature less than 5000 eV and the temperature sensitivities will decrease with the increase of electronic temperature.展开更多
In this paper, the principle and method of the electron temperature measurement by means of electron cyclotron emission (ECE) have been discribed. Several results under different conditions on HL-IM tokamak have been ...In this paper, the principle and method of the electron temperature measurement by means of electron cyclotron emission (ECE) have been discribed. Several results under different conditions on HL-IM tokamak have been given. The hollow profile of electron temperature appears in some stages, such as current rising, pellet injection and impurity concentration in the plasma centre. When the bias voltage is applied, the electron temperature profile become steeper. All of the phenomena are related with the transport in plasma centre.展开更多
A spectroscopic diagnostic method, to measure electron temperature of radiationheated CH foam on Shenguang Ⅱ laser facility, is described. A tracer layer of aluminum was embedded in the middle of the CH foam and a po...A spectroscopic diagnostic method, to measure electron temperature of radiationheated CH foam on Shenguang Ⅱ laser facility, is described. A tracer layer of aluminum was embedded in the middle of the CH foam and a point-projection method used in the opacity experiment was induced to measure the transmission spectrum of the embedded Al foil. The electron temperature, of about 80 eV, was deduced through a comparison of the experimental absorption spectrum with the calculated one with a detailed level accounting opacity code. The results of hydrodynamic simulation show that it's reasonable to determine the CH foam temperature by measuring the embedded Al absorption spectrum. Thus, the electron temperature of radiationheated CH foam was obtained.展开更多
The behavior of argon plasma driven by nanosecond pulsed plasma in a low-pressure plasma reactor is investigated using a global model, and the results are compared with the experimental measurements. The time evolutio...The behavior of argon plasma driven by nanosecond pulsed plasma in a low-pressure plasma reactor is investigated using a global model, and the results are compared with the experimental measurements. The time evolution of plasma density and the electron energy probability function are calculated by solving the energy balance and Boltzmann equations. During and shortly after the discharge pulse, the electron energy probability function can be represented by a bi-Maxwellian distribution, indicating two energy groups of electrons. According to the effective electron temperature calculation, we find that there are more high-energy electrons that play an important role in the excitation and ionization processes than low-energy electrons. The effective electron temperature is also measured via optical emission spectroscopy to evaluate the simulation model. In the comparison, the simulation results are found to be in agreement with the measure- ments. Furthermore, variations of the effective electron temperature are presented versus other discharge parameters, such as pulse width time, pulse rise time and gas pressure.展开更多
文摘In this article, four kinds of optical emission spectroscopic methods of determining electron temperature are used to investigate the relationship between electron temperature and pressure in the cylindrical plasmas of dc glow discharges at low pressures in laboratory by measuring the relative intensities of ArI lines at various pressures. These methods are developed respectively on the basis of the Fermi-Dirac model, corona model, and two kinds of electron collision cross section models according to the kinetic analysis. Their theoretical bases and the conditions to which they are applicable are reviewed, and their calculation results and fitting errors are compared with each other. The investigation has indicated that the electron temperatures obtained by the four methods become consistent with each other when the pressure increases in the low pressure argon plasmas.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2013GB109005)the Fundamental Research Funds for the Central Universities(Nos.DUT15RC(3)072,DUT15TD44,DUT16TD13)
文摘As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering(LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5?×10^19m^-3 to7.1?×10^20m^-3 and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison,an optical emission spectroscopy(OES) system was established as well. The results showed that the electron excitation temperature(configuration temperature) measured by OES is significantly higher than the electron temperature(kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium(LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.10905047)
文摘Two curved crystal spectrometers are set up on the "QiangGuang-1" generator to measure the z-pinch plasma spectra emitted from planar aluminum wire array loads. Kodak Biomax-MS film and an IRD AXUVHS5# array are employed to record time-integrated and time-resolved free-bound radiation, respectively. The photon energy recorded by each detector is ascertained by using the L-shell lines of molybdenum plasma. Based on the exponential relation between the continuum power and photon energies, the aluminum plasma electron temperatures are measured. For the time-integrated diagnosis, several "bright spots" indicate electron temperatures between (450 eV- 520 eV) ± 35%. And for the time-resolved ones, the result shows that the electron temperature reaches about 800 eV±30% at peak power. The system satisfies the demand of z-pinch plasma electron temperature diagnosis on a - 1 MA facility.
基金supported by National Natural Science Foundation of China(Grant No.11647150)Young Talents Program of Gansu Province of China(2016)Scientific Research Program of the Higher Education Institutions of Gansu Province of China(Grant No.2016A-068)
文摘Based on the theory of plasma continuous radiation, the relationship between the emission intensity of bremsstrahlung and recombination radiation and the plasma electron temperature is obtained. During the development process of a return stroke of ground flash, the intensity of continuous radiation spectrum is separated on the basis of the spectrums with obviously different luminous intensity at two moments. The electron temperature of the lightning discharge channel is obtained through the curve fitting of the continuous spectrum intensity. It is found that electron temperature increases with the increase of wavelength and begins to reduce after the peak. The peak temperature of the two spectra is close to 25 000 K. To be compared with the result of discrete spectrum, the electron temperature is fitted by the O I line and N II line of the spectrum respectively. The comparison shows that the high temperature value is in good agreement with the temperature of the lightning core current channel obtained from the ion line information, and the low temperature at the high band closes to the calculation result of the atomic line, at a low band is lower than the calculation of the atomic line, which reflects the temperature of the luminous channel of the outer corona.
基金supported by National Magnetic Confinement Fusion Science Program of China under Contracts Nos.2015GB101000,2013GB106000,and 2013GB107000National Natural Science Foundation of China under Contracts Nos.11575235,11422546 and 11505222Youth Foundation of ASIPP under Grant No.Y45ETY2306
文摘A new edge tangential multi-energy soft x-ray(ME-SXR) diagnostic with high temporal(≤ 0.1 ms) and spatial(~1 cm) resolution has been developed for a variety of physics topics studies in the EAST tokamak plasma. The fast edge electron temperature profile(approximately from r a~ 0.6 to the scrape-off layer) is investigated using ME-SXR diagnostic system. The data process was performed by the ideal ‘multi-foil' technique, with no priori assumptions of plasma profiles. Reconstructed ME-SXR emissivity profiles for a variety of EAST experimental scenarios are presented here for the first time. The applications of the ME-SXR for study of the effects of resonant magnetic perturbation on edge localized modes and the first time neon radiating divertor experiment in EAST are also presented in this work. It has been found that neon impurity can suppress the 2/1 tearing mode and trigger a 3/1 MHD mode.
基金supported by the National Natural Science Foundation of China(Grant Nos.10975026,11275034,and 11175052)the Key Project of Science andTechnology of Liaoning Province,China(Grant No.2011224007)the Fundamental Research Funds for the Central Universities of Ministry of Educationof China(Grant No.3132014328)
文摘In this paper, a two-dimensional physical model is established in a Hall thruster sheath region to investigate the influences of the electron temperature and the propellant on the sheath potential drop and the secondary electron emission in the Hall thruster, by the particle-in-cell (PIC) method. The numerical results show that when the electron temperature is relatively low, the change of sheath potential drop is relatively large, the surface potential maintains a stable value and the stability of the sheath is good. When the electron temperature is relatively high, the surface potential maintains a persistent oscillation, and the stability of the sheath reduces. As the electron temperature increases, the secondary electron emission coefficient on the wall increases. For three kinds of propellants (At, Kr, and Xe), as the ion mass increases the sheath potentials and the secondary electron emission coefficients reduce in sequence.
基金Project supported by the Autonomous Innovation Fund,China (Grant Nos.0109012922 and 0109012926)the Youth Foundation of Department of Education of Hubei Province,China (Grant No.Q20101602)
文摘Effects of electron temperature on dielectric function and localization of laser beams in underdense collisional plasmas are investigated. Simulation results show that the electron temperature has a strong effect on the dielectric constant and the laser beam localization. It is observed that due to the influence of the electron temperature, the dielectric function presents some interesting and complicated nonlinear variations, and gives rise to the laser beam lo- calization. Moreover, the amplitudes of the beam width and the beam intensity are subjected to continuously oscillatory variation in the region of localization. In addition, the effects of several parameters on the dielectric function and the beam localization are discussed.
文摘We measured electron temperatures through a hollow cathode-type discharge tube using several different floating probe methods. This method detected a shift in the floating potential when an AC voltage was applied to a probe through an intermediary blocking capacitor. The shift in the floating potential is described as a function of the electron temperature and the applied AC voltage. In this study, the effects of the frequency and waveform on the electron temperatures were systematically investigated. The electron temperature measured when using the floating probe method with applied sinusoidal and triangular voltages was lower than that measured with an applied rectangular voltage.The value in the high frequency range was close to that of the tail electron temperature.
基金supported by the National Magnetic Confinement Fusion Science Program(Nos.2018YFE0301104,2018YFE0301100)State Key Laboratory of Advanced Electromagnetic Engineering and Technology(No.AEET2020KF001)National Natural Science Foundation of China(Nos.12075096,51821005)。
文摘The reliability of diagnostic systems in tokamak plasma is of great significance for physics researches or fusion reactor.When some diagnostics fail to detect information about the plasma status,such as electron temperature,they can also be obtained by another method:fitted by other diagnostic signals through machine learning.The paper herein is based on a machine learning method to predict electron temperature,in case the diagnostic systems fail to detect plasma temperature.The fully-connected neural network,utilizing back propagation with two hidden layers,is utilized to estimate plasma electron temperature approximately on the J-TEXT.The input parameters consist of soft x-ray emission intensity,electron density,plasma current,loop voltage,and toroidal magnetic field,while the targets are signals of electron temperature from electron cyclotron emission and x-ray imaging crystal spectrometer.Therefore,the temperature profile is reconstructed by other diagnostic signals,and the average errors are within 5%.In addition,generalized regression neural network can also achieve this function to estimate the temperature profile with similar accuracy.Predicting electron temperature by neural network reveals that machine learning can be used as backup means for plasma information so as to enhance the reliability of diagnostics.
基金supported by National Natural Science Foundation of China (Nos. 10375070, 10305012)
文摘In order to estimate the electron temperature soft x-ray imaging diagnostics using a double filter technique has been developed in the HT-7 tokamak. The chosen thicknesses of the Be foil are 12.5 μm and 70 μm, respectively. In this article both the main design of the diagnostic configuration and the method to estimate the electron temperature are presented. The results agree with those estimated from the soft x-ray pulse height analyzer (PHA). The main causes of systematic error have also been investigated.
文摘This study presents a novel floating probe method to measure electron temperatures using a hollow cathode-type discharge tube. The proposed method detects a shift in the floating potential when an AC voltage is applied to a probe through an intermediary blocking capacitor. The shift in the floating potential is described as a function of the electron temperature and the applied AC voltage. The floating probe method is simpler than the Langmuir probe method because it does not require the measurement of volt-ampere characteristics. As the input AC voltage increases, the electron temperature converges. The electron temperature measured using the floating probe method with an applied sinusoidal voltage shows a value close to the first (tail) electron temperature in the range of the floating potential.
基金supported by the National Magnetic Confinement Fusion Energy Research and Development Program of China(Nos.2019YFE03090100,2019YFE03040004)the National Science Foundation for Young Scientists of China(No.12005052)。
文摘Data analysis on tokamak plasmas is mainly based on various diagnostic systems,which are usually modularized and independent of each other.This leads to a large amount of data not being fully and effectively exploited so that it is not conducive to revealing the deep physical mechanism.In this work,Bayesian probability inference with machine learning methods have been applied to the electron cyclotron emission and Thomson scattering diagnostic systems on HL-2A/2M,and the effects of integrated data analysis(IDA)on the electron temperature of HL-2A with Bayesian probability inference are demonstrated.A program is developed to infer the whole electron temperature profile with a confidence interval,and the program can be applied in online analysis.The IDA results show that the full profile of the electron temperature can be obtained and the diagnostic information is more comprehensive and abundant with IDA.The inference models for electron temperature analysis are established and the developed programs will serve as an experimental data analysis tool for HL-2A/2M in the near future.
基金supported by the National MCF Energy R&D Program of China (No. 2019YFE0304000)National Natural Science Foundation of China (Nos. 12005262 and 11975274)+3 种基金the Anhui Provincial Natural Science Foundation (No. 2108085J06)the Users with Excellence Program of Hefei Science Center CAS (Nos. 2021HSC-UE018 and 2020HSC-UE011)the External Cooperation Program of Chinese Academy of Sciences (No. 116134KYSB20180035)the Science Foundation of Institute of Plasma Physics, Chinese Academy of Sciences (No. DSJJ-2021-04)
文摘In recent EAST experiments,current profile broadening characterized by reduced internal inductance has been achieved by utilizing radio-frequency current drives(RFCD).In contrast to previous density scan experiments,which showed an outward shift of the current density profile of lower hybrid current drive(LHCD)in higher plasma density,the core electron temperature(T_(e)(0))is found to affect the LHCD current profile as well.According to equilibrium reconstruction,a significant increase in on-axis safety factor(q0)from 2.05 to 3.41 is observed by careful arrangement of RFCD.Simulations using ray-tracing code GENRAY and Fokker–Planck code CQL3D have been performed to thoroughly analyze the LHCD current profile,revealing the sensitivity of the LHCD current profile to T_(e)(0).The LHCD current density tends to accumulate in the plasma core with higher current drive efficiency benefiting from higher T_(e)(0).With a lower T_(e)(0),the LHCD current profile broadens due to off-axis deposition of power density.The sensitivity of the power deposition and current profile of LHCD to T_(e)(0)provides a promising way to effectively optimize current profile via control of the core electron temperature.
基金the US Department of Energy under grant DE-FG03-97-ER54415
文摘Electron thermal transport is one of the most complex processes in fusionplasmas. It is generally described by a simple thermal diffusivity in transport analyses ofdischarges, but there is evidence of critical gradient effects with moderate stiffness. By analyzingperiodic perturbations to an equilibrium, one canmeasure the variations in electron energy flux andelectron temperature gradient over the perturbation cycle, obtaining the flux as a function ofgradient over the range of parameters generated by the perturbation. Although time-dependenttransport analysis is very sensitive to noise in the input data, averaging over many cycles of aperiodic perturbation can provide data of sufficient quality. The analyses presented here are basedon the ECE temperature data with high spatial and temporal resolution and full profile coverage onDIII-D for sawteeth and modulated ECH heating.
基金supported by the National Natural Science Foundation of China (Grant No 10335060)PRC–US Fusion Cooperation Program (Plasma Physics,Project A–5)Chinese Academy of Sciences and Japanese Society of Promotion of Science (CAS-JSPS) Core University Program in Plasma and Nuclear Fusion
文摘The fluctuation of the electron temperature has been measured by using the electron cyclotron emission imaging in the Hefei Tokamak-7 (HT-7) plasma. The electron temperature fluctuation with a broadband spectrum shows that it propagates in the electron diamagnetic drift direction, and the mean poloidal wave-number kθ is calculated to be about 1.58cm^-1, or k^-θρs ≈ 0.34. It indicates that the fluctuation should come from the electron drift wave turbulence. The linear global scaling of the electron temperature fluctuation with the gradient of electron temperature is consistent with the mixing length scale qualitatively. Evolution of spectrum of the fluctuation during the sawtooth oscillation phases is investigated, and the fluctuation is found to increase with the gradient of electron temperature increasing during most phases of the sawtooth oscillation. The results indicate that the electron temperature gradient is probably the driver of the fluctuation enhancement. The steady heat flux driven by electron temperature fluctuation is estimated and compared with the results from power balance estimation.
基金National Natural Science Foundation of China(No.10405014)
文摘A gyrokinetic model with integral eigenmode equations is developed based on the local equilibrium of shaped tokamak plasmas. Effects of main geometric parameters (finite aspect ratio, elongation, triangularity, and Shafranov shift gradient) on the electrostatic electron temper- ature gradient (ETG) driven modes are investigated numerically. It is found that the finite aspect ratio has a general stabilizing effect, while the elongation can be either stabilizing or destabilizing, depending on the poloidal wavelength of the mode and other parameters. It is shown that a low aspect ratio enhances the stabilizing effect of elongation, and weakens its destabilizing effect as well.
文摘Under coronal conditions, the steady state rate-equations are used to calculate the inter-stage line ratios between Li-like ls22p(2P3/2)→ls22s(2S1/2) and He-like ls2p(1P1)→1s2(1S0) transitions for Ti in the electronic temperature ranges from 0.1keV to 20 keV. The results show that the temperature sensitivities are higher at the electronic temperature less than 5000 eV and the temperature sensitivities will decrease with the increase of electronic temperature.
文摘In this paper, the principle and method of the electron temperature measurement by means of electron cyclotron emission (ECE) have been discribed. Several results under different conditions on HL-IM tokamak have been given. The hollow profile of electron temperature appears in some stages, such as current rising, pellet injection and impurity concentration in the plasma centre. When the bias voltage is applied, the electron temperature profile become steeper. All of the phenomena are related with the transport in plasma centre.
基金supported by National Natural Science Foundation of China (Nos. 10734140, 10874156 and 10875109)
文摘A spectroscopic diagnostic method, to measure electron temperature of radiationheated CH foam on Shenguang Ⅱ laser facility, is described. A tracer layer of aluminum was embedded in the middle of the CH foam and a point-projection method used in the opacity experiment was induced to measure the transmission spectrum of the embedded Al foil. The electron temperature, of about 80 eV, was deduced through a comparison of the experimental absorption spectrum with the calculated one with a detailed level accounting opacity code. The results of hydrodynamic simulation show that it's reasonable to determine the CH foam temperature by measuring the embedded Al absorption spectrum. Thus, the electron temperature of radiationheated CH foam was obtained.
基金supported by National Natural Science Foundation of China (Nos.10875023,11175035)the Ph.D research program(No.200801411040 ) of Educational Ministry+1 种基金the Scientific and Technical Foundation of Liaoning Province (No.20082168)National Magnetic Confinement Fusion Science Program of China (Nos.2009GB106004,2008CB717801)
文摘The behavior of argon plasma driven by nanosecond pulsed plasma in a low-pressure plasma reactor is investigated using a global model, and the results are compared with the experimental measurements. The time evolution of plasma density and the electron energy probability function are calculated by solving the energy balance and Boltzmann equations. During and shortly after the discharge pulse, the electron energy probability function can be represented by a bi-Maxwellian distribution, indicating two energy groups of electrons. According to the effective electron temperature calculation, we find that there are more high-energy electrons that play an important role in the excitation and ionization processes than low-energy electrons. The effective electron temperature is also measured via optical emission spectroscopy to evaluate the simulation model. In the comparison, the simulation results are found to be in agreement with the measure- ments. Furthermore, variations of the effective electron temperature are presented versus other discharge parameters, such as pulse width time, pulse rise time and gas pressure.