The maximum carboxylation rate of Rubisco(Vcmax)and maximum rate of electron transport(Jmax)for the biochemical photosynthetic model,and the slope(m)of the Ball-Berry stomatal conductance model influence gas exchange ...The maximum carboxylation rate of Rubisco(Vcmax)and maximum rate of electron transport(Jmax)for the biochemical photosynthetic model,and the slope(m)of the Ball-Berry stomatal conductance model influence gas exchange estimates between plants and the atmosphere.However,there is limited data on the variation of these three parameters for annual crops under different environmental conditions.Gas exchange measurements of light and CO2 response curves on leaves of winter wheat and spring wheat were conducted during the wheat growing season under different environmental conditions.There were no significant differences for Vcmax,Jmax or m between the two wheat types.The seasonal variation of Vcmax,Jmax and m for spring wheat was not pronounced,except a rapid decrease for Vcmax and Jmax at the end of growing season.Vcmax and Jmax show no significant changes during soil drying until light saturated stomatal conductance(gssat)was smaller than 0.15 mol m^–2 s^–1.Meanwhile,there was a significant difference in m during two different water supply conditions separated by gssat at 0.15 mol m^–2 s^–1.Furthermore,the misestimation of Vcmax and Jmax had great impacts on the net photosynthesis rate simulation,whereas,the underestimation of m resulted in underestimated stomatal conductance and transpiration rate and an overestimation of water use efficiency.Our work demonstrates that the impact of severe environmental conditions and specific growing stages on the variation of key model parameters should be taken into account for simulating gas exchange between plants and the atmosphere.Meanwhile,modification of m and Vcmax(and Jmax)successively based on water stress severity might be adopted to simulate gas exchange between plants and the atmosphere under drought.展开更多
In order to investigate the distribution of rare earth elements (REEs) in the natural hyperaccumulator fern Dicranopteris dichotoma Bernh. and to characterize this plant photosynthetically, concentrations of REEs in...In order to investigate the distribution of rare earth elements (REEs) in the natural hyperaccumulator fern Dicranopteris dichotoma Bernh. and to characterize this plant photosynthetically, concentrations of REEs in D. dichotoma from mines mining heavy and light REEs (HREEs and LREEs, respectively), as well as in D. dichotoma from an area in which no mining occurred, in southern Jiangxi Province were determined using inductively coupled plasma-mass spectrometry. The REE concentrations in the lamina of D. dichotoma were in the order LREEs mine 〉 HREEs mine 〉 non-mining area. The maximum REE content in the lamina of D. dichotoma from the LREE mine was approximately 2 648 mg/kg dry weight. The photosynthetic activity of D. dichotoma from areas of HREE and LREE mines was improved by the presence of high concentrations of REEs in the lamina compared with D. dichotoma from the non-mining area. However, this enhancement varied according to the concentrations of the REEs, as well as their type. In addition, 77K fluorescence, electron transport rate, and chlorophyll-protein complex studies showed that the enhancement of the photosynthetic activity of D. dichotoma from HREE mines was mainly due to an increase in the chlorophyll-protein complex of the reaction center of photosystem (PS) Ⅰ, whereas the enhancement observed in D. dichotoma from LREE mines was due to an increase in the internal antennae chlorophyll-protein complex of PS Ⅱ and greater light energy distribution to the light-harvesting chlorophyll-protein complex of PS Ⅱ.展开更多
基金This research was jointly supported by the National Natural Science Foundation of China(41375019,41730645,and 41275118)the China Special Fund for Meteorological Research in the Public Interest(Major projects)(GYHY201506001-2).
文摘The maximum carboxylation rate of Rubisco(Vcmax)and maximum rate of electron transport(Jmax)for the biochemical photosynthetic model,and the slope(m)of the Ball-Berry stomatal conductance model influence gas exchange estimates between plants and the atmosphere.However,there is limited data on the variation of these three parameters for annual crops under different environmental conditions.Gas exchange measurements of light and CO2 response curves on leaves of winter wheat and spring wheat were conducted during the wheat growing season under different environmental conditions.There were no significant differences for Vcmax,Jmax or m between the two wheat types.The seasonal variation of Vcmax,Jmax and m for spring wheat was not pronounced,except a rapid decrease for Vcmax and Jmax at the end of growing season.Vcmax and Jmax show no significant changes during soil drying until light saturated stomatal conductance(gssat)was smaller than 0.15 mol m^–2 s^–1.Meanwhile,there was a significant difference in m during two different water supply conditions separated by gssat at 0.15 mol m^–2 s^–1.Furthermore,the misestimation of Vcmax and Jmax had great impacts on the net photosynthesis rate simulation,whereas,the underestimation of m resulted in underestimated stomatal conductance and transpiration rate and an overestimation of water use efficiency.Our work demonstrates that the impact of severe environmental conditions and specific growing stages on the variation of key model parameters should be taken into account for simulating gas exchange between plants and the atmosphere.Meanwhile,modification of m and Vcmax(and Jmax)successively based on water stress severity might be adopted to simulate gas exchange between plants and the atmosphere under drought.
文摘In order to investigate the distribution of rare earth elements (REEs) in the natural hyperaccumulator fern Dicranopteris dichotoma Bernh. and to characterize this plant photosynthetically, concentrations of REEs in D. dichotoma from mines mining heavy and light REEs (HREEs and LREEs, respectively), as well as in D. dichotoma from an area in which no mining occurred, in southern Jiangxi Province were determined using inductively coupled plasma-mass spectrometry. The REE concentrations in the lamina of D. dichotoma were in the order LREEs mine 〉 HREEs mine 〉 non-mining area. The maximum REE content in the lamina of D. dichotoma from the LREE mine was approximately 2 648 mg/kg dry weight. The photosynthetic activity of D. dichotoma from areas of HREE and LREE mines was improved by the presence of high concentrations of REEs in the lamina compared with D. dichotoma from the non-mining area. However, this enhancement varied according to the concentrations of the REEs, as well as their type. In addition, 77K fluorescence, electron transport rate, and chlorophyll-protein complex studies showed that the enhancement of the photosynthetic activity of D. dichotoma from HREE mines was mainly due to an increase in the chlorophyll-protein complex of the reaction center of photosystem (PS) Ⅰ, whereas the enhancement observed in D. dichotoma from LREE mines was due to an increase in the internal antennae chlorophyll-protein complex of PS Ⅱ and greater light energy distribution to the light-harvesting chlorophyll-protein complex of PS Ⅱ.