期刊文献+
共找到371篇文章
< 1 2 19 >
每页显示 20 50 100
TiO_(2)Electron Transport Layer with p-n Homojunctions for Efficient and Stable Perovskite Solar Cells
1
作者 Wenhao Zhao Pengfei Guo +8 位作者 Jiahao Wu Deyou Lin Ning Jia Zhiyu Fang Chong Liu Qian Ye Jijun Zou Yuanyuan Zhou Hongqiang Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期1-14,共14页
Low-temperature processed electron transport layer(ETL)of TiO_(2)that is widely used in planar perovskite solar cells(PSCs)has inherent low carrier mobility,resulting in insufficient photogenerated elec-tron transport... Low-temperature processed electron transport layer(ETL)of TiO_(2)that is widely used in planar perovskite solar cells(PSCs)has inherent low carrier mobility,resulting in insufficient photogenerated elec-tron transport and thus recombination loss at buried interface.Herein,we demonstrate an effective strategy of laser embedding of p-n homojunctions in the TiO_(2)ETL to accelerate electron transport in PSCs,through localized build-in electric fields that enables boosted electron mobility by two orders of magnitude.Such embedding is found significantly helpful for not only the enhanced crystallization quality of TiO_(2)ETL,but the fabrication of perovskite films with larger-grain and the less-trap-states.The embedded p-n homojunction enables also the modulation of interfacial energy level between perovskite layers and ETLs,favoring for the reduced voltage deficit of PSCs.Benefiting from these merits,the formamidinium lead iodide(FAPbI_(3))PSCs employing such ETLs deliver a champion efficiency of 25.50%,along with much-improved device stability under harsh conditions,i.e.,maintain over 95%of their initial efficiency after operation at maximum power point under continuous heat and illumination for 500 h,as well as mixed-cation PSCs with a champion efficiency of 22.02%and over 3000 h of ambient storage under humidity stability of 40%.Present study offers new possibilities of regulating charge transport layers via p-n homojunction embedding for high performance optoelectronics. 展开更多
关键词 electron transport layer p-n homojunction electron mobility Buried interface Perovskite solar cells
下载PDF
Amorphous BaTiO_(3) Electron Transport Layer for Thermal Equilibrium-Governed γ-CsPbl_(3) Perovskite Solar Cell with High Power Conversion Efficiency of 19.96%
2
作者 Changhyun Lee Chanyong Lee +4 位作者 Kyungjin Chae Taemin Kim Seaeun Park Yohan Ko Yongseok Jun 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期291-302,共12页
Compared to organic-inorganic hybrid perovskites,the cesium-based allinorganic lead halide perovskite(CsPbI_(3))is a promising light absorber for perovskite solar cells owing to its higher resistance to thermal stress... Compared to organic-inorganic hybrid perovskites,the cesium-based allinorganic lead halide perovskite(CsPbI_(3))is a promising light absorber for perovskite solar cells owing to its higher resistance to thermal stress.Nonetheless,additional research is required to reduce the nonradiative recombination to realize the full potential of CsPbI_(3).Here,the diffusion of Cs ions participating in ion exchange is proposed to be an important factor responsible for the bulk defects inγ-CsPbI_(3)perovskite.Calculations based on first-principles density functional theory reveal that the[PbI_(6)]^(4-)octahedral tilt modifies the perovskite crystallographic properties inγ-CsPbI_(3),leading to alterations in its bandgap and crystal strain.In addition,by substituting amorphous barium titanium oxide(a-BaTiO_(3))for TiO_(2)as the electron transport layer,interfacial defects caused by imperfect energy levels between the electron transport layer and perovskite are reduced.High-resolution transmission electron microscopy and electron energy loss spectroscopy demonstrate that a-BaTiO_(3)forms entirely as a single phase,as opposed to Ba-doped TiO_(2)hybrid nanoclusters or separate domains of TiO_(2)and BaTiO_(3)phases.Accordingly,inorganic perovskite solar cells based on the a-BaTiO_(3)electron transport layer achieved a power conversion efficiency of 19.96%. 展开更多
关键词 amorphous BaTiO_(3) electron transport layer MOISTURE γ-CsPbI_(3)
下载PDF
Gelation of Hole Transport Layer to Improve the Stability of Perovskite Solar Cells 被引量:3
3
作者 Ying Zhang Chenxiao Zhou +7 位作者 Lizhi Lin Fengtao Pei Mengqi Xiao Xiaoyan Yang Guizhou Yuan Cheng Zhu Yu Chen Qi Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期305-316,共12页
To achieve high power conversion efficiency(PCE) and long-term stability of perovskite solar cells(PSCs), a hole transport layer(HTL) with persistently high conductivity, good moisture/oxygen barrier ability, and adeq... To achieve high power conversion efficiency(PCE) and long-term stability of perovskite solar cells(PSCs), a hole transport layer(HTL) with persistently high conductivity, good moisture/oxygen barrier ability, and adequate passivation capability is important. To achieve enough conductivity and effective hole extraction, spiro-OMe TAD, one of the most frequently used HTL in optoelectronic devices, often needs chemical doping with a lithium compound(LiTFSI). However, the lithium salt dopant induces crystallization and has a negative impact on the performance and lifetime of the device due to its hygroscopic nature. Here, we provide an easy method for creating a gel by mixing a natural small molecule additive(thioctic acid, TA) with spiro-OMe TAD. We discover that gelation effectively improves the compactness of resultant HTL and prevents moisture and oxygen infiltration. Moreover, the gelation of HTL improves not only the conductivity of spiro-OMe TAD, but also the operational robustness of the devices in the atmospheric environment. In addition, TA passivates the perovskite defects and facilitates the charge transfer from the perovskite layer to HTL. As a consequence, the optimized PSCs based on the gelated HTL exhibit an improved PCE(22.52%) with excellent device stability. 展开更多
关键词 Perovskite solar cell hole transport layer GELATION Humidity stability Aggregation of LiTFSI
下载PDF
Tailored PEDOT:PSS hole transport layer for higher performance in perovskite solar cells: Enhancement of electrical and optical properties with improved morphology 被引量:5
4
作者 Khan Mamun Reza Ashim Gurung +12 位作者 Behzad Bahrami Sally Mabrouk Hytham Elbohy Rajesh Pathak Ke Chen Ashraful Haider Chowdhury Md Tawabur Rahman Steven Letourneau Hao-Cheng Yang Gopalan Saianand Jeffrey WElam Seth BDarling Qiquan Qiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第5期41-50,共10页
Precise control over the charge carrier dynamics throughout the device can result in outstanding performance of perovskite solar cells(PSCs).Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is the mo... Precise control over the charge carrier dynamics throughout the device can result in outstanding performance of perovskite solar cells(PSCs).Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is the most actively studied hole transport material in p-i-n structured PSCs.However,charge transport in the PEDOT:PSS is limited and inefficient because of its low conductivity with the presence of the weak ionic conductor PSS.In addition,morphology of the underlying PEDOT:PSS layer in PSCs plays a crucial role in determining the optoelectronic quality of the active perovskite absorber layer.This work is focused on realization of a non-wetting conductive surface of hole transport layer suitable for the growth of larger perovskite crystalline domains.This is accomplished by employing a facile solventengineered(ethylene glycol and methanol)approach resulting in removal of the predominant PSS in PEDOT:PSS.The consequence of acquiring larger perovskite crystalline domains was observed in the charge carrier dynamics studies,with the achievement of higher charge carrier lifetime,lower charge transport time and lower transfer impedance in the solvent-engineered PEDOT:PSS-based PSCs.Use of this solventengineered treatment for the fabrication of MAPbI3 PSCs greatly increased the device stability witnessing a power conversion efficiency of 18.18%,which corresponds to^37%improvement compared to the untreated PEDOT:PSS based devices. 展开更多
关键词 PEROVSKITE solar cells PEDOT:PSS treatment hole transport layer Non-wetting PEDOT:PSS surface
下载PDF
Highly efficient flexible perovskite solar cells with vacuum-assisted low-temperature annealed SnO2 electron transport layer 被引量:2
5
作者 Xiaoguo Li Zejiao Shi +11 位作者 Fatemeh Behrouznejad Mohammad Hatamvand Xin Zhang Yaxin Wang Fengcai Liu Haoliang Wang Kai Liu Hongliang Dong Farhan Mudasar Jiao Wang Anran Yu Yiqiang Zhan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期1-7,共7页
The demand for lightweight, flexible, and high-performance portable power sources urgently requires high-efficiency and stable flexible solar cells. In the case of perovskite solar cells(PSCs), most of the common elec... The demand for lightweight, flexible, and high-performance portable power sources urgently requires high-efficiency and stable flexible solar cells. In the case of perovskite solar cells(PSCs), most of the common electron transport layer(ETL) needs to be annealed for improving the optoelectronic properties,while conventional flexible substrates could barely stand the high temperature. Herein, a vacuumassisted annealing SnO_(2) ETL at low temperature(100℃) is utilized in flexible PSCs and achieved high efficiency of 20.14%. Meanwhile, the open-circuit voltage(V_(oc)) increases from 1.07 V to 1.14 V. The flexible PSCs also show robust bending stability with 86.8% of the initial efficiency is retained after 1000 bending cycles at a bending radius of 5 mm. X-ray photoelectron spectroscopy(XPS), atomic force microscopy(AFM), and contact angle measurements show that the density of oxygen vacancies, the surface roughness of the SnO_(2) layer, and film hydrophobicity are significantly increased, respectively. These improvements could be due to the oxygen-deficient environment in a vacuum chamber, and the rapid evaporation of solvents. The proposed vacuum-assisted low-temperature annealing method not only improves the efficiency of flexible PSCs but is also compatible and promising in the large-scale commercialization of flexible PSCs. 展开更多
关键词 Flexible perovskite solar cells VACUUM-ASSISTED electron transport layer Trap-assisted recombination
下载PDF
Composite electron transport layer for efficient N-I-P type monolithic perovskite/silicon tandem solar cells with high open-circuit voltage 被引量:2
6
作者 Bingbing Chen Pengyang Wang +8 位作者 Renjie Li Ningyu Ren Yongliang Chen Wei Han Lingling Yan Qian Huang Dekun Zhang Ying Zhao Xiaodan Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期461-467,I0011,共8页
Perovskite/silicon tandem solar cells(PSTSCs) have exhibited huge technological potential for breaking the Shockley-Queisser limit of single-junction solar cells. The efficiency of P-I-N type PSTSCs has surpassed the ... Perovskite/silicon tandem solar cells(PSTSCs) have exhibited huge technological potential for breaking the Shockley-Queisser limit of single-junction solar cells. The efficiency of P-I-N type PSTSCs has surpassed the single-junction limit, while the performance of N-I-P type PSTSCs is far below the theoretical value. Here, we developed a composite electron transport layer for N-I-P type monolithic PSTSCs with enhanced open-circuit voltage(VOC) and power conversion efficiency(PCE). Lithium chloride(Li Cl) was added into the tin oxide(SnO_(2)) precursor solution, which simultaneously passivated the defects and increased the electron injection driving force at the electron transfer layer(ETL)/perovskite interface.Eventually, we achieved monolithic PSTSCs with an efficiency of 25.42% and V_(OC) of 1.92 V, which is the highest PCE and VOCin N-I-P type perovskite/Si tandem devices. This work on interface engineering for improving the PCE of monolithic PSTSCs may bring a new hot point about perovskite-based tandem devices. 展开更多
关键词 Lithium chloride additive electron transport layer High efficiency Perovskite/Si tandem solar cells
下载PDF
Improved performance of organic light-emitting diodes with dual electron transporting layers 被引量:1
7
作者 焦志强 吴晓明 +4 位作者 华玉林 穆雪 毕文涛 白娟娟 印寿根 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第6期448-450,共3页
In this study the performance of organic light-emitting diodes (OLEDs) are enhanced significantly, which is based on dual electron transporting layers (13phen/CuPc). By adjusting the thicknesses of Bphen and CuPc,... In this study the performance of organic light-emitting diodes (OLEDs) are enhanced significantly, which is based on dual electron transporting layers (13phen/CuPc). By adjusting the thicknesses of Bphen and CuPc, the maximal luminescence, the maximal current efficiency, and the maximal power efficiency of the device reach 17570 cd/m^2 at 11 V, and 5.39 cd/A and 3.39 lm/W at 3.37 mA/cm^2 respectively, which are enhanced approximately by 33.4%, 39.3%, and 68.9%, respectively, compared with those of the device using Bphen only for an electron transporting layer. These results may provide some valuable references for improving the electron injection and the transportation of OLED. 展开更多
关键词 organic light-emitting diodes dual electron transporting layers CUPC
下载PDF
Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO2 thin films as efficient electron transport layer 被引量:1
8
作者 Mehdi Ahmadi Sajjad Rashidi Dafeh +1 位作者 Samaneh Ghazanfarpour Mohammad Khanzadeh 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期406-410,共5页
We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hex... We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hexylthiophene) P3HT:[6-6] phenyl-(6) butyric acid methyl ester(PCBM). 1% vanadium-doped TiO2nanoparticles were synthesized via the solvothermal method. Crystalline structure, morphology, and optical properties of pure and vanadium-doped TiO2 thin films were studied by different techniques such as x-ray diffraction, scanning electron microscopy, transmittance electron microscopy, and UV–visible transmission spectrum. The doctor blade method which is compatible with roll-2-roll printing was used for deposition of pure and vanadium-doped TiO2 thin films with thicknesses of 30 nm and 60 nm. The final results revealed that the best thickness of TiO2 thin films for our fabricated cells was 30 nm. The cell with vanadium-doped TiO2 thin film showed slightly higher power conversion efficiency and great Jsc of 10.7 mA/cm^2 compared with its pure counterpart. In the cells using 60 nm pure and vanadium-doped TiO2 layers, the cell using the doped layer showed much higher efficiency. It is remarkable that the external quantum efficiency of vanadium-doped TiO2 thin film was better in all wavelengths. 展开更多
关键词 inverted polymer solar cells electron transport layer vanadium-doped TiO2 thin films solvothermal
下载PDF
TTA as a potential hole transport layer for application in conventional polymer solar cells
9
作者 Le Liu Saisai Zhou +8 位作者 Chengjie Zhao Tonggang Jiu Fuzhen Bi Hongmei Jian Min Zhao Guodong Zhang Lejia Wang Fenfen Li Xunwen Xiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第3期210-216,共7页
Hole transport layers(HTLs)play a vital role in organic solar cells(OSCs).In this work,a derivative of tetrathiafulvalene with four carboxyl groups TTA was introduced as a novel HTL to fabricate OSC with high performa... Hole transport layers(HTLs)play a vital role in organic solar cells(OSCs).In this work,a derivative of tetrathiafulvalene with four carboxyl groups TTA was introduced as a novel HTL to fabricate OSC with high performance.Displaying a better energy level match between HTL and active layers,the TTA based devices show a peak power conversion efficiency of 9.09%,which is comparable to the devices based on PEDOT:PSS.The favorable surface morphology recorded via atomic force microscopy,low series loss and charge recombination indicated by electrochemical impedance spectroscopy,synchronously verify the potential of TTA for application in OSCs as a valid kind of HTLs. 展开更多
关键词 ORGANIC SOLAR cells hole transport layer TTA Energy level CHARGE recombination
下载PDF
TiO_2 composite electron transport layers for planar perovskite solar cells by mixed spray pyrolysis with precursor solution incorporating TiO_2 nanoparticles
10
作者 田嘉琪 李红翠 +3 位作者 王海月 郑博 薛叶斌 刘喜哲 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第1期121-126,共6页
Perovskite solar cells with planar structure are attractive for their simplified device structure and reduced hysteresis effect. Compared to conventional mesoporous devices, TiO2 porous scaffold layers are removed in ... Perovskite solar cells with planar structure are attractive for their simplified device structure and reduced hysteresis effect. Compared to conventional mesoporous devices, TiO2 porous scaffold layers are removed in planar devices. Then, compact TiO2 electron transport layers take the functions of extracting electrons, transporting electrons, and blocking holes. Therefore, the properties of these compact TiO2 layers are important for the performance of solar cells. In this work, we develop a mixed spray pyrolysis method for producing compact TiO2 layers by incorporating TiO2 nanoparticles with dif- ferent size into the precursor solutions. For the optimized nanoparticle size of 60 nm, a power conversion efficiency of 16.7% is achieved, which is obviously higher than that of devices without incorporated nanoparticles (9.9%). Further in- vestigation reveals that the incorporation of nanoparticles can remarkably improve the charge extraction and recombination processes. 展开更多
关键词 perovskite solar cell electron transport layer charge extraction recombination
下载PDF
TiO_(2)/SnO_(2)electron transport double layers with ultrathin SnO_(2)for efficient planar perovskite solar cells
11
作者 Can Li Hongyu Xu +2 位作者 Chongyang Zhi Zhi Wan Zhen Li 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第11期74-81,共8页
The electron transport layer(ETL)plays an important role on the performance and stability of perovskite solar cells(PSCs).Developing double ETL is a promising strategy to take the advantages of different ETL materials... The electron transport layer(ETL)plays an important role on the performance and stability of perovskite solar cells(PSCs).Developing double ETL is a promising strategy to take the advantages of different ETL materials and avoid their drawbacks.Here,an ultrathin SnO_(2)layer of~5 nm deposited by atomic layer deposit(ALD)was used to construct a TiO_(2)/SnO_(2)double ETL,improving the power conversion efficiency(PCE)from 18.02%to 21.13%.The ultrathin SnO_(2)layer enhances the electrical conductivity of the double layer ETLs and improves band alignment at the ETL/perovskite interface,promoting charge extraction and transfer.The ultrathin SnO_(2)layer also passivates the ETL/perovskite interface,suppressing nonradiative recombination.The double ETL achieves outstanding stability compared with PSCs with TiO_(2)only ETL.The PSCs with double ETL retains 85%of its initial PCE after 900 hours illumination.Our work demonstrates the prospects of using ultrathin metal oxide to construct double ETL for high-performance PSCs. 展开更多
关键词 atomic layer deposit TiO_(2) SnO_(2) electron transport layer stability
下载PDF
Charge transfer modification of inverted planar perovskite solar cells by NiO_(x)/Sr:NiO_(x)bilayer hole transport layer
12
作者 Qiaopeng Cui Liang Zhao +6 位作者 Xuewen Sun Qiannan Yao Sheng Huang Lei Zhu Yulong Zhao Jian Song Yinghuai Qiang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第3期624-630,共7页
Perovskite solar cells(PSCs) are the most promising commercial photoelectric conversion technology in the future.The planar p–i–n structure cells have advantages in negligible hysteresis, low temperature preparation... Perovskite solar cells(PSCs) are the most promising commercial photoelectric conversion technology in the future.The planar p–i–n structure cells have advantages in negligible hysteresis, low temperature preparation and excellent stability.However, for inverted planar PSCs, the non-radiative recombination at the interface is an important reason that impedes the charge transfer and improvement of power conversion efficiency. Having a homogeneous, compact, and energy-levelmatched charge transport layer is the key to reducing non-radiative recombination. In our study, NiO_(x)/Sr:NiO_(x)bilayer hole transport layer(HTL) improves the holes transmission of NiO_(x)based HTL, reduces the recombination in the interface between perovskite and HTL layer and improves the device performance. The bilayer HTL enhances the hole transfer by forming a driving force of an electric field and further improves J_(sc). As a result, the device has a power conversion efficiency of 18.44%, a short circuit current density of 22.81 m A·cm^(-2) and a fill factor of 0.80. Compared to the pristine PSCs, there are certain improvements of optical parameters. This method provides a new idea for the future design of novel hole transport layers and the development of high-performance solar cells. 展开更多
关键词 perovskite solar cells nickel oxide Sr doping bilayer hole transport layer
下载PDF
Highly efficient bifacial semitransparent perovskite solar cells based on molecular doping of CuSCN hole transport layer
13
作者 Shixin Hou Biao Shi +12 位作者 Pengyang Wang Yucheng Li Jie Zhang Peirun Chen Bingbing Chen Fuhua Hou Qian Huang Yi Ding Yuelong Li Dekun Zhang Shengzhi Xu Ying Zhao Xiaodan Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期596-605,共10页
Coper thiocyanate(CuSCN)is generally considered as a very hopeful inorganic hole transport material(HTM)in semitransparent perovskite solar cells(ST-PSCs)because of its low parasitic absorption,high inherent stability... Coper thiocyanate(CuSCN)is generally considered as a very hopeful inorganic hole transport material(HTM)in semitransparent perovskite solar cells(ST-PSCs)because of its low parasitic absorption,high inherent stability,and low cost.However,the poor electrical conductivity and low work function of CuSCN lead to the insufficient hole extraction and large open-circuit voltage loss.Here,2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane(F4TCNQ)is employed to improve conductivity of CuSCN and band alignment at the CuSCN/perovskite(PVK)interface.As a result,the average power conversion efficiency(PCE)of PSCs is boosted by≈11%.In addition,benefiting from the superior transparency of p-type CuSCN HTMs,the prepared bifacial semitransparent n-i-p planar PSCs demonstrate a maximum efficiency of 14.8%and 12.5%by the illumination from the front side and back side,respectively.We believe that this developed CuSCN-based ST-PSCs will promote practical applications in building integrated photovoltaics and tandem solar cells. 展开更多
关键词 perovskite solar cell CUSCN inorganic hole transport layer organic doping semitransparent solar cell
下载PDF
Improvement of Performance of Organic Light-Emitting Diodes with Both a MoO3 Hole Injection Layer and a MoO3 Doped Hole Transport Layer
14
作者 刘伟 刘国红 +2 位作者 刘勇 李宝军 周翔 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第7期160-163,共4页
We improve the performance of organic light-emitting diodes (OLEDs) with both a MoO3 hole injection layer (HIL) and a MoO3 doped hole transport layer (HTL), and present a systematical and comparative investigati... We improve the performance of organic light-emitting diodes (OLEDs) with both a MoO3 hole injection layer (HIL) and a MoO3 doped hole transport layer (HTL), and present a systematical and comparative investigation on these devices. Compared with OLEDs with only MoO3 HIL or MoO3 doped HTL, OLEDs with both MoO3 HIL and MoO3 doped HTL show superior performance in driving voltage, power efficiency, and stability. Based on the typical NPB/Alq3 heterojunction structure, OLEDs with both MoO3 HIL and MoO3 doped HTL show a driving voltage of 5.4 V and a power efficiency of 1.41 lm/W for 1000 cd/m2, and a lifetime of around 0. 88 h with an initial luminance of 5268 cd/m2 under a constant current of 190 mA/cm2 operation in air without encapsulation. While OLEDs with only MoO3 HIL or MoO3 doped HTL show higher driving voltages of 6.4 V or 5.8 V and lower power efficiencies of 1.201m/W or 1.341m/W for 1000cd/m2, and a shorter lifetime of 0.33 or 0.60h with an initial luminance of around 5122 or 5300cd/m2 under a constant current of 200 or 216mA/cm2 operation. Our results demonstrate clearly that using both MoO3 HIL and MoO3 doped HTL is a simple and effective approach to simultaneoasly improve both the hole injection and transport efficiency, resulting from the lowered energy barrier at the anode interface and the increased hole carrier density in MoO3 doped HTL. 展开更多
关键词 NPB HTL HIL OLEDs Improvement of Performance of Organic Light-Emitting Diodes with Both a MoO3 hole Injection layer and a MoO3 Doped hole transport layer
下载PDF
Fabrication of Perovskite-Type Photovoltaic Devices with Polysilane Hole Transport Layers
15
作者 Yasuhiro Shirahata Takeo Oku +1 位作者 Sakiko Fukunishi Kazufumi Kohno 《Materials Sciences and Applications》 2017年第2期209-222,共14页
Perovskite-type photovoltaic devices with polysilane hole transport layers were fabricated by a spin-coating method. In the present work, poly(methyl phenylsilane) (PMPS) and decaphenylcyclopentasilane (DPPS) were use... Perovskite-type photovoltaic devices with polysilane hole transport layers were fabricated by a spin-coating method. In the present work, poly(methyl phenylsilane) (PMPS) and decaphenylcyclopentasilane (DPPS) were used as the hole transport layers. First, structural and optical properties of the PMPS and DPPS films were investigated, and the as-prepared PMPS and DPPS films were amorphous. Optical absorption spectra of the amorphous PMPS and DPPS showed some marked features due to the nature of polysilanes. Then, microstructures, optical and photovoltaic properties of the perovskite-type photovoltaic devices with polysilane hole transport layers were investigated. Current density-voltage characteristics and incident photon to current conversion efficiency of the photovoltaic devices with the polysilane layers showed different photovoltaic performance each other, attributed to molecular structures of the polysilanes and Si content in the present hole transport layers. 展开更多
关键词 POLYSILANE hole transport layer PEROVSKITE PHOTOVOLTAIC Device
下载PDF
Increased performance of an organic light-emitting diode by employing a zinc phthalocyanine based composite hole transport layer
16
作者 郭闰达 岳守振 +3 位作者 王鹏 陈宇 赵毅 刘式墉 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期431-434,共4页
We demonstrate that the electroluminescent performances of organic light-emitting diodes are significantly improved by employing a zinc phthalocyanine (ZnPc)-based composite hole transport layer (c-HTL). The optim... We demonstrate that the electroluminescent performances of organic light-emitting diodes are significantly improved by employing a zinc phthalocyanine (ZnPc)-based composite hole transport layer (c-HTL). The optimum ris-(8-hydroxyquinoline)aluminum (Alq3)-based organic light-emitting diode with a c-HTL exhibits a lower turn-on voltage of 2.8 V, a higher maximum current efficiency of 3.40 cd/A and a higher maximum power efficiency of 1.91 lm/W, which are superior to those of the conventional device (turn-on voltage of 3.8 V, maximum current efficiency of 2.60 cd/A, and maximum power efficiency of 1.21 lm/W). We systematically studied the effects of different kinds of N’-diphenyl-N,N’-bis(1-naphthyl)(1,1’-biphenyl)-4,4’diamine (NPB):ZnPc c-HTL. Meanwhile, we also investigate their mechanisms different from that in the case of using ZnPc as buffer layer. The specific analysis is based on the absorption spectra of the hole transporting material and current density–voltage characteristics of the corresponding hole-only devices. 展开更多
关键词 organic light emitting diodes composite hole transport layer zinc phthalocyanine
下载PDF
TiO_2 nanoparticle-based electron transport layer with improved wettability for efficient planar-heterojunction perovskite solar cell
17
作者 Peng Chen Yinglin Wang +3 位作者 Meiqi Wang Xintong Zhang Lingling Wang Yichun Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第6期717-721,共5页
The electron transport layer (ETL) plays an important role in planar heterojunction perovskite solar cell (PSCs), by affecting the light-harvesting, electron injection and transportation processes, and especially ... The electron transport layer (ETL) plays an important role in planar heterojunction perovskite solar cell (PSCs), by affecting the light-harvesting, electron injection and transportation processes, and especially the crystal- lization of perovskite absorber. In this work, we utilized a commercial TKD-TiO2 nanoparticle with a small diameter of 6 nm for the first time to prepare a compact ETL by spin coating. The packing of small-size particles endowed TKD-TiO2 ETL an appropriate surface-wettability, which is beneficial to the crystallization of perovskite deposited via solution-processed method. The uniform and high-transmittance TKD-TiO2 films were successfully incorporated into PSCs as ETLs. Further careful optimization of ETL thickness gave birth to a highest power conversion efficiency of 11.0%, which was much higher than that of PSC using an ETL with the same thickness made by spray pyrolysis. This TKD-TiO2 provided a universal solar material suitable for the further large-scale production of PSCs. The excellent morphology and the convenient preparation method of TKD-TiO2 film gave it an extensive application in photovoltaic devices. 展开更多
关键词 TiO2 nanoparticle Planar-heterojunction Perovskite solar cell Wettability electron transport layers
下载PDF
Optical and NH<sub>3</sub>Gas Sensing Properties of Hole-Transport Layers Based on PEDOT: PSS Incorporated with Nano-TiO<sub>2</sub>
18
作者 Lam Minh Long Tran Quang Trung +1 位作者 Vo-Van Truong Nguyen Nang Dinh 《Materials Sciences and Applications》 2017年第9期663-672,共10页
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) incorporated with nanocrystalline TiO2 powder (PEDOT:PSS+nc-TiO2) films were prepared by spin-coating technique. SEM surface morphology, UV-Vis spectra and NH3 g... Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) incorporated with nanocrystalline TiO2 powder (PEDOT:PSS+nc-TiO2) films were prepared by spin-coating technique. SEM surface morphology, UV-Vis spectra and NH3 gas sensing of were studied. Results showed that the PEDOT:PSS+nc-TiO2 film with a content of 9.0 wt% of TiO2 is most suitable for both the hole transport layer and the NH3 sensing. The responding time of the sensor made from this composite film reached a value as fast as 20 s. The rapid responsiveness to NH3 gas was attributed to the efficient movement of holes as the major charge carriers in PEDOT:PSS+nc-TiO2 composite films. Useful applications in organic electronic devices like light emitting diodes and gas thin film sensors can be envisaged. 展开更多
关键词 PEDOT:PSS+nc-TiO2 Composite UV-VIS Spectra J-V Characteristic Thermal SENSING Property hole transport layer NH3 Gas SENSING
下载PDF
Stabilizing semi-transparent perovskite solar cells with a polymer composite hole transport layer
19
作者 Yongbin Jin Huiping Feng +10 位作者 Zheng Fang Liu Yang Kaikai Liu Bingru Deng Jingfu Chen Xueling Chen Yawen Zhong Jinxin Yang Chengbo Tian Liqiang Xie Zhanhua Wei 《Nano Research》 SCIE EI CSCD 2024年第3期1500-1507,共8页
Semi-transparent perovskite solar cells(ST-PSCs)have broad applications in building integrated photovoltaics.However,the stability of ST-PSCs needs to be improved,especially in n-i-p ST-PSCs since the doped 2,2',7... Semi-transparent perovskite solar cells(ST-PSCs)have broad applications in building integrated photovoltaics.However,the stability of ST-PSCs needs to be improved,especially in n-i-p ST-PSCs since the doped 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)-9,9'-spirobifluorene(Spiro-OMeTAD)is unstable at elevated temperatures and high humidity.In this work,aπ-conjugated polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)](PBDB-T)is selected to form a polymer composite hole transport layer(HTL)with Spiro-OMeTAD.The sulfur atom of the thiophene unit and the carbonyl group of the polymer interact with the undercoordinated Pb2+at the perovskite surface,which stabilizes the perovskite/HTL interface and passivates the interfacial defects.The incorporation of the polymer also increases the glass transition temperature and the moisture resistance of Spiro-OMeTAD.As a result,we obtain ST-PSCs with a champion efficiency of 13.71%and an average visible light transmittance of 36.04%.Therefore,a high light utilization efficiency of 4.94%can be obtained.Moreover,the encapsulated device can maintain 84%of the initial efficiency after 751 h under continuous one-sun illumination(at 30%relative humidity)at the open circuit and the unencapsulated device can maintain 80%of the initial efficiency after maximum power tracking for more than 1250 h under continuous one-sun illumination. 展开更多
关键词 semi-transparent solar cells π-conjugated polymer composite hole transport layer building integrated photovoltaics
原文传递
Recent advances of Cu-based hole transport materials and their interface engineering concerning different processing methods in perovskite solar cells 被引量:3
20
作者 Tengling Ye Xiaochen Sun +1 位作者 Xiaoru Zhang Sue Hao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期459-476,I0010,共19页
In recent years, perovskite solar cells (PSCs) have become a much charming photovoltaic technology and have triggered enormous studies worldwide, owing to their high efficiency, low cost and ease of preparation. The p... In recent years, perovskite solar cells (PSCs) have become a much charming photovoltaic technology and have triggered enormous studies worldwide, owing to their high efficiency, low cost and ease of preparation. The power conversion efficiency has rapidly increased by more than 6 times to the current 25.5% in the past decade. Hole transport materials (HTMs) are an indispensable part of PSCs, which great affect the efficiency, the cost and the stability of PSCs. Inorganic Cu-based p-type semiconductors are a kind of representative inorganic HTMs in PSCs due to their unique advantages of rich variety, low cost, excellent hole mobility, adjustable energy levels, good stability, low temperature and scalable processing ability. In this review, the research progress in new materials and the control of photoelectric properties of Cu-based inorganic HTMs were first summarized systematically. And then, concerning different processing methods, advances of the interface engineering of Cu-based hole transport layers (HTLs) in PSCs were detailly discussed. Finally, the challenges and future trends of Cu-based inorganic HTMs and their interface engineering in PSCs were analyzed. 展开更多
关键词 Perovskite solar cell Inorganic hole transport materials hole transport layer CUI CUSCN
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部