In this study,wearable triboelectric nanogenerators comprising bar-printed polyvinylidene fluoride(PVDF)films incorporated with cobalt-based metal-organic framework(Co-MOF)were developed.The enhanced output performanc...In this study,wearable triboelectric nanogenerators comprising bar-printed polyvinylidene fluoride(PVDF)films incorporated with cobalt-based metal-organic framework(Co-MOF)were developed.The enhanced output performance of the TENGs was attributed to the phase transition of PVDF from a-crystals toβ-crystals,as facilitated by the incorporation of the MOF.The synthesis conditions,including metal ion,concentration,and particle size of the MOF,were optimized to increase open-circuit voltage(VOC)and open-circuit current(I_(SC))of PVDF-based TENGs.In addition to high operational stability,mechanical robustness,and long-term reliability,the developed TENG consisting of PVDF incorporated with Co-MOF(Co-MOF@PVDF)achieved a VOC of 194 V and an I_(SC)of 18.8μA.Furthermore,the feasibility of self-powered mobile electronics was demonstrated by integrating the developed wearable TENG with rectifier and control units to power a global positioning system(GPS)device.The local position of the user in real-time through GPS was displayed on a mobile interface,powered by the battery charged through friction-induced electricity generation.展开更多
The establishment of efficient oxygen evolution electrocatalysts is of great value but also challenging.Herein,a durable metal–organic framework(MOF)with minor atomically dispersed ruthenium and an optimized electron...The establishment of efficient oxygen evolution electrocatalysts is of great value but also challenging.Herein,a durable metal–organic framework(MOF)with minor atomically dispersed ruthenium and an optimized electronic structure is constructed as an efficient electrocatalyst.Significantly,the obtained NiRu_(0.08)-MOF with doping Ru only needs an overpotential of 187 mV at 10 mA cm^(-2) with a Tafel slop of 40 mV dec^(-1) in 0.1M KOH for the oxygen evolution reaction,and can work continuously for more than 300 h.Ultrahigh Ru mass activity is achieved,reaching 56.7 Ag^(-1)_(Ru) at an overpotential of 200 mV,which is 36 times higher than that of commercial RuO_(2).X-ray adsorption spectroscopy and density function theory calculations reveal that atomically dispersed ruthenium on metal sites in MOFs is expected to optimize the electronic structure of nickel sites,thus improving the conductivity of the catalyst and optimizing the adsorption energy of intermediates,resulting in significant optimization of electrocatalytic performance.This study could provide a new avenue for the design of efficient and stable MOF electrocatalysts.展开更多
The ferromagnetism of two-dimensional(2D)materials has aroused great interest in recent years,which may play an important role in the next-generation magnetic devices.Herein,a series of 2D transition metal-organic fra...The ferromagnetism of two-dimensional(2D)materials has aroused great interest in recent years,which may play an important role in the next-generation magnetic devices.Herein,a series of 2D transition metal-organic framework materials(TM-NH MOF,TM=Sc-Zn)are designed,and their electronic and magnetic characters are systematically studied by means of first-principles calculations.Their structural stabilities are examined through binding energies and ab-initio molecular dynamics simulations.Their optimized lattice constants are correlated to the central TM atoms.These 2D TM-NH MOF nanosheets exhibit various electronic and magnetic performances owing to the effective charge transfer and interaction between TM atoms and graphene linkers.Interestingly,Ni-and Zn-NH MOFs are nonmagnetic semiconductors(SM)with band gaps of 0.41 eV and 0.61 eV,respectively.Co-and Cu-NH MOFs are bipolar magnetic semiconductors(BMS),while Fe-NH MOF monolayer is a half-semiconductor(HSM).Furthermore,the elastic strain could tune their magnetic behaviors and transformation,which ascribes to the charge redistribution of TM-3d states.This work predicts several new 2D magnetic MOF materials,which are promising for applications in spintronics and nanoelectronics.展开更多
It is critical to synthesize high-efficiency electrocatalysts to boost the performance of water splitting to meet the requirements of industrial applications. Metal-organic frameworks(MOFs) can function as ideal molec...It is critical to synthesize high-efficiency electrocatalysts to boost the performance of water splitting to meet the requirements of industrial applications. Metal-organic frameworks(MOFs) can function as ideal molecular platforms for the design of highly reactive transition metal phosphides(TMPs), a kind of candidates for high-efficiently electrocatalytic water splitting. The intrinsic activity of the electrocatalysts can be greatly improved via modulating the electronic structure of the catalytic center through the MOF precursors/templates. Moreover, the carbon layer converted in-situ by the organic ligands can not only protect the TMPs from being degraded in the harsh electrochemical environments, but also avoid agglomeration of the catalysts, thereby promoting their activities and stabilities. Furthermore,heteroatom-containing ligands can incorporate N, S or P, etc. atoms into the carbon matrixes after conversion, regulating the coordination microenvironments of the active centers as well as their electronic structures. In this review, we first summarized the latest developments in MOF-derived TMPs by the unique advantages in metal, organic ligand, and morphology regulations for electrocatalytic water splitting. Secondly, we concluded the critical scientific issues currently facing for designing state-of-the-art TMP-based electrocatalysts. Finally, we presented an outlook on this research area, encompassing electrocatalyst construction, catalytic mechanism research, etc.展开更多
The ferrocene(Fc)-based metal-organic frameworks(MOFs)are regarded as compelling platforms for the construction of efficient and robust oxygen evolution reaction(OER)electrocatalysts due to their superior conductivity...The ferrocene(Fc)-based metal-organic frameworks(MOFs)are regarded as compelling platforms for the construction of efficient and robust oxygen evolution reaction(OER)electrocatalysts due to their superior conductivity and flexible electronic structure.Herein,density functional theory simulations were addressed to predict the electronic structure regulations of CoFc-MOF by nickel doping,which demonstrated that the well-proposed CoNiFc-MOFs delivered a small energy barrier,promoted conductivity,and well-regulated d-band center.Inspired by these,a series of sea-urchin-like CoNiFc-MOFs were successfully synthesized via a facile solvothermal method.Moreover,the synchrotron X-ray and X-ray photoelectron spectroscopy measurements manifested that the introduction of nickel could tailor the electronic structure of the catalyst and induce the directional transfer of electrons,thus optimizing the rate-determining step of^(*)O→^(*)OOH during the OER process and yielding decent overpotentials of 209 and 252 mV at 10 and 200 mA cm^(−2),respectively,with a small Tafel slope of 39 mV dec^(−1).This work presents a new paradigm for developing highly efficient and durable MOF-based electrocatalysts for OER.展开更多
First-row transition metal compounds have been widely explored as oxygen evolution reaction(OER)electrocatalysts due to their impressive performance in this application.However,the activity trends of these electrocata...First-row transition metal compounds have been widely explored as oxygen evolution reaction(OER)electrocatalysts due to their impressive performance in this application.However,the activity trends of these electrocatalysts remain elusive due to the effect of inevitable iron impurities in alkaline electrolytes on the OER;the inhomogeneous structure of iron-based(oxy)hydroxides further complicates this situation.Bimetallic metal-organic frameworks(MOFs)have the advantages of well-defined and uniform atomic structures and the tunable coordination environments,allowing the structure-activity relationships of bimetallic sites to be precisely explored.Therefore,we prepared a series of iron-based bimetallic MOFs(denoted as Fe_(2)M-MIL-88B,M=Mn,Co,or Ni)and systematically compared their electrocatalytic performance in the OER in this work.All the bimetallic MOFs exhibited higher OER activity than their monometallic iron-based counterpart,with their activity following the order FeNi>FeCo>FeMn.In an alkaline electrolyte,Fe2Ni-MIL-88B showed the lowest overpotential to achieve a current density of 10 mA cm^(–2)(307 mV)and the smallest Tafel slope(38 mV dec^(–1)).The experimental and calculated results demonstrated that iron and nickel exhibited the strongest coupling effect in the series,leading to modification of the electronic structure,which is crucial for tuning the electrocatalytic activity.展开更多
Cobalt-based nanomaterials have been intensively explored as one of the most promising noble-metal-free oxygen evolution reaction (OER) electrocatalysts. However, most of their performances are still inferior to state...Cobalt-based nanomaterials have been intensively explored as one of the most promising noble-metal-free oxygen evolution reaction (OER) electrocatalysts. However, most of their performances are still inferior to state-of-the-art precious metals especially for Ru and Ir.Herein, we apply a continuous ion exchange method and further hydrothermal treatment to synthesize the flake-like Ag-CoSO4 nanohybrids beginning from Co-BTC (BTC:benzene-1,3,5-tricarboxylic acid) metal-organic frameworks precursor. The catalyst exhibits superior OER performance under the alkaline electrolyte solution (a low overpotential of 282 mV at 10 mA/cm2 in 1 mol/L KOH), which is even better than RuO2 due to the improved conductivity and rapid electrons transfer process via introducing small amount of Ag. The existence of Ag in the hybrids is beneficial for increasing the Co(IV) concentration, thus promoting the *OOH intermediate formation process. Besides, due to the very low requirement of Ag content (lower than 1 atom%), the cost of the catalyst is also limited. This work provides a new insight for designing of inexpensive OER catalysts with high performance and low cost.展开更多
Hierarchical nanostructure construction and electronic structure engineering are commonly employed to increase the electrocatalytic activity of HER electrocatalysts.Herein,Ni doped Co_(3)S_(4) hierarchical nanosheets ...Hierarchical nanostructure construction and electronic structure engineering are commonly employed to increase the electrocatalytic activity of HER electrocatalysts.Herein,Ni doped Co_(3)S_(4) hierarchical nanosheets on Ti mesh(Ni doped Co_(3)S_(4) HNS/TM)were successfully prepared by using metal organic framework(MOF)as precursor which was synthesized under ambient condition.Characterization results confirmed this structure and Ni incorporation into Co_(3)S_(4) lattice as well as the modified electronic structure of Co_(3)S_(4) by Ni doping.Alkaline HER performance showed that Ni doped Co_(3)S_(4) HNS/TM presented outstanding HER activity with 173 m V overpotential at-10 m A·cm^(-2),surpassing most of metal sulfide-based electrocatalysts.The hierarchical structure,superior electrical conductivity and electronic structure modulation contributed to the accelerated water dissociation and enhanced intrinsic activity.This work provides a new avenue for synthesizing hierarchical nanostructure and simultaneously tuning the electronic structure to promote HER performance,which has potential application in designing highly efficient and cost-effective HER nanostructured electrocatalyst.展开更多
Symmetric covalent organic framework(COF)photocatalysts generally suffer from inefficient charge separation and short-lived photoexcited states.By performing density functional theory(DFT)and time-dependent density fu...Symmetric covalent organic framework(COF)photocatalysts generally suffer from inefficient charge separation and short-lived photoexcited states.By performing density functional theory(DFT)and time-dependent density functional theory(TDDFT)calculations,we find that partial substitution with one or two substituents(N or NH_(2))in the linkage of the representative symmetric COF(N_(0)-COF)gives rise to the separation of charge carriers in the resulting COFs(i.e.,N_(1)-COF,N_(2)-COF,(NH_(2))1-N_(0)-COF,and(NH_(2))2-N_(0)-COF).Moreover,we also find that the energy levels of the highest occupied crystal orbital(HOCO)and the lowest unoccupied crystal orbital(LUCO)of the N_(0)-COF can shift away from or toward the vacuum level,depending on the electron-withdrawing or electron-donating characters of the substituent.Therefore,we propose that partial substitution with carefully chosen electron-withdrawing or electron-donating substituents in the linkages of symmetric COFs can lead to efficient charge separation as well as appropriate HOCO and LUCO positions of the generated COFs for specific photocatalytic reactions.The proposed rule can be utilized to further boost the photocatalytic performance of many symmetric COFs.展开更多
Selective hydrogenation of alkynes to alkenes remains challenging in the field of catalysis due to the ease of over-hydrogenated of alkynes to alkanes.Favorably,the incorporation of metal nanoparticles(MNPs)into metal...Selective hydrogenation of alkynes to alkenes remains challenging in the field of catalysis due to the ease of over-hydrogenated of alkynes to alkanes.Favorably,the incorporation of metal nanoparticles(MNPs)into metal-organic frameworks(MOFs)provides an opportunity to adjust the surface electronic properties of MNPs for selective hydrogenation of alkynes.Herein,we used differentmetal-O clusters of MOFs to regulate the electronic status of platinum nanoparticles(Pt NPs)toward overhydrogenation,semihydrogenation,and unhydrogenation of phenylacetylene.Specifically,Pt/Fe-O cluster-based MOFs are found to reduce the electronic density on Pt NPs and inhibit the overhydrogenation of styrene,leading to an 80%increase in selectivity toward a semihydrogenation product(styrene).Meanwhile,Cu-O cluster-based MOFs generate high oxidation states of Pt NPs and release Cu^(2+)ions,which worked together to deactivate Pt NPs in the hydrogenation reaction entirely.Thus,our studies illustrate the critical role of metal-O clusters in governing chemical environments within MOFs for the precise control of selective hydrogenation of alkynes,thereby,offering appealing opportunities for designing MNPs/MOFs catalysts to prompt a variety of reactions.展开更多
Photocatalytic hydrogen generation from hydrogen storage media is an effective and promising approach for the green hydrogen industry as well as for achieving carbon neutrality goals.However,the lower photocatalytic e...Photocatalytic hydrogen generation from hydrogen storage media is an effective and promising approach for the green hydrogen industry as well as for achieving carbon neutrality goals.However,the lower photocatalytic efficiency due to the limited light trapping capacity,low electron transfer rate,and severe aggregation of nanoparticles caused by high surface energy seriously restricts their practical application.Herein,we constructed a series of donor–acceptor(D–A)type covalent organic frameworks to confine ultrafine bimetallic Pt-based nanoclusters for photocatalytic hydrogen generation from ammonia borane(AB)hydrolysis.Under visible light irradiation at 20℃,PtCo_(2)@covalent organic framework(COF)showed the highest photocatalytic activity with a turnover frequency(TOF)of 486 min−1.Experiments and density functional theory(DFT)calculations reveal that the high catalytic activity is mainly attributed to the strong electronic interactions between D–A type COF and ultrafine PtCo_(2)nanoclusters.Specifically,the D–A type COF can significantly enhance the light-trapping ability by fine-tuning the electron-acceptor type in the framework,and accelerate the photogenerated electron transfer from D–A type COF to PtCo_(2)nanocluster,which promotes the adsorption and activation of H_(2)O and AB molecules and accelerates hydrogen release.Furthermore,PtCo_(2)@COF also exhibited ultra-high durability due to the significantly enhanced resistance to nanocluster aggregation caused by the nanopore confinement effect of D–A type COF.We believe that this work will provide a theoretical guide for the rational design of efficient D–A COFbased catalysts for photocatalysis.展开更多
Nitroaromatic hydrogenation catalysis without precious metals remains a longstanding challenge.The rate of electron transfer is the crucial factor affecting hydrogenation catalysis.Herein,an ionic Cd-based metal-organ...Nitroaromatic hydrogenation catalysis without precious metals remains a longstanding challenge.The rate of electron transfer is the crucial factor affecting hydrogenation catalysis.Herein,an ionic Cd-based metal-organic framework(I-Cd-MOF)exhibiting a unique structure with one-dimensional(1D)opening nanochannels and good electron transfer ability was synthesized for catalyzing hydrogenation of 4-nitrophenol(4-NP).The catalytic activity of the unique I-Cd-MOF without noble metals is detected,which is higher than most reported noble metal catalysts.Remarkably,the reaction rate of I-Cd-MOF(4.28 min^(-1))is about 47.6 times higher than that of the Cd-based neutral MOF(N-Cd-MOF)with the similar crystalline structure.Liquid chromatograph mass spectrometer(LC-MS)and theoretical results demonstrate that 4-NP and five intermediates are stabilized in the channels of I-Cd-MOF,which increases the possibility of contact with H^*and H_(2)g enerated at the Cd sites.The I-Cd-MOF was extended to other nitroaromatic hydrogenation catalysis,which still displays excellent activity.More importantly,the I-MOF@Filter membrane was successfully constructed for continuous hydrogenation catalytic reactions,which maintains a high catalytic performance after 7 cycles of recycling without washing.This work fills in the application of the I-MOFs in hydrogenation catalytic reactions and provides an effective way for the rapid and green degradation of nitroaromatic compounds.展开更多
Constructing three dimensional(3D)covalent organic frameworks(COFs)through the entanglement of two dimensional(2D)nets is a promising but underdeveloped strategy.Herein,we report the design and synthesis of a fluorine...Constructing three dimensional(3D)covalent organic frameworks(COFs)through the entanglement of two dimensional(2D)nets is a promising but underdeveloped strategy.Herein,we report the design and synthesis of a fluorine functionalized 3DCOF(3D-An-COF-F)formed by entangled 2D sql nets.The structure of 3D-An-COF-F was determined by the combination of continuous rotation electron diffraction technique and modelling based on the chemical information from real space.Interestingly,compared to the isostructural 3D-An-COF without F atom s,3DAn-COF-F showed an improved CO_(2)sorption ability and higher CO_(2)/N_(2)selectivity.Our study not only demonstrated the generality of constructing 3D COFs with entangled 2D nets by introducing bulky groups vertically in planar building blocks,but also will expand the diversity of 3D COFs for various applications.展开更多
With the progress of computer technology, CAD technique is urgent needed. In this paper, we conduct numerical and theoretical analysis and research on computer aided design technique and novel pattern for electronic a...With the progress of computer technology, CAD technique is urgent needed. In this paper, we conduct numerical and theoretical analysis and research on computer aided design technique and novel pattern for electronic architectural drawing and perspective. AUTOCAD drawing soRware because of its versatility and easy entry, in engineering has broad user base, but also because of the basis of general drawing software, often cannot directly use of the existing order efficiently complete professional drawing. We modify the current pattern and introduce our proposed pattern for advancement. The experiment proves the effectiveness of the pattern. In addition, we will conduct more insightful research in the future to nolish the current anoroach.展开更多
Regulation the electronic density of solid-state electrolyte by donor–acceptor(D–A)system can achieve highly-selective Li^(+)transportation and conduction in solid-state Li metal batteries.This study reports a high-...Regulation the electronic density of solid-state electrolyte by donor–acceptor(D–A)system can achieve highly-selective Li^(+)transportation and conduction in solid-state Li metal batteries.This study reports a high-performance solid-state electrolyte thorough D–A-linked covalent organic frameworks(COFs)based on intramolecular charge transfer interactions.Unlike other reported COFbased solid-state electrolyte,the developed concept with D–A-linked COFs not only achieves electronic modulation to promote highly-selective Li^(+)migration and inhibit Li dendrite,but also offers a crucial opportunity to understand the role of electronic density in solid-state Li metal batteries.The introduced strong electronegativity F-based ligand in COF electrolyte results in highlyselective Li^(+)(transference number 0.83),high ionic conductivity(6.7×10^(-4)S cm^(−1)),excellent cyclic ability(1000 h)in Li metal symmetric cell and high-capacity retention in Li/LiFePO_(4)cell(90.8%for 300 cycles at 5C)than substituted C-and N-based ligands.This is ascribed to outstanding D–A interaction between donor porphyrin and acceptor F atoms,which effectively expedites electron transferring from porphyrin to F-based ligand and enhances Li^(+)kinetics.Consequently,we anticipate that this work creates insight into the strategy for accelerating Li^(+)conduction in high-performance solid-state Li metal batteries through D–A system.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(NRF-2021R1A2C2012855)
文摘In this study,wearable triboelectric nanogenerators comprising bar-printed polyvinylidene fluoride(PVDF)films incorporated with cobalt-based metal-organic framework(Co-MOF)were developed.The enhanced output performance of the TENGs was attributed to the phase transition of PVDF from a-crystals toβ-crystals,as facilitated by the incorporation of the MOF.The synthesis conditions,including metal ion,concentration,and particle size of the MOF,were optimized to increase open-circuit voltage(VOC)and open-circuit current(I_(SC))of PVDF-based TENGs.In addition to high operational stability,mechanical robustness,and long-term reliability,the developed TENG consisting of PVDF incorporated with Co-MOF(Co-MOF@PVDF)achieved a VOC of 194 V and an I_(SC)of 18.8μA.Furthermore,the feasibility of self-powered mobile electronics was demonstrated by integrating the developed wearable TENG with rectifier and control units to power a global positioning system(GPS)device.The local position of the user in real-time through GPS was displayed on a mobile interface,powered by the battery charged through friction-induced electricity generation.
基金National Natural Science Foundation of China,Grant/Award Number:51632008。
文摘The establishment of efficient oxygen evolution electrocatalysts is of great value but also challenging.Herein,a durable metal–organic framework(MOF)with minor atomically dispersed ruthenium and an optimized electronic structure is constructed as an efficient electrocatalyst.Significantly,the obtained NiRu_(0.08)-MOF with doping Ru only needs an overpotential of 187 mV at 10 mA cm^(-2) with a Tafel slop of 40 mV dec^(-1) in 0.1M KOH for the oxygen evolution reaction,and can work continuously for more than 300 h.Ultrahigh Ru mass activity is achieved,reaching 56.7 Ag^(-1)_(Ru) at an overpotential of 200 mV,which is 36 times higher than that of commercial RuO_(2).X-ray adsorption spectroscopy and density function theory calculations reveal that atomically dispersed ruthenium on metal sites in MOFs is expected to optimize the electronic structure of nickel sites,thus improving the conductivity of the catalyst and optimizing the adsorption energy of intermediates,resulting in significant optimization of electrocatalytic performance.This study could provide a new avenue for the design of efficient and stable MOF electrocatalysts.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62074053,61901161,21906041,and 11774079)the Natural Science Foundation of Henan Province,China(Grant Nos.202300410226,202300410237,and 202300410100)+1 种基金Henan Overseas Expertise Introduction Center for Discipline Innovation(Grant No.CXJD2019005)key scientific research projects of Colleges and universities in Henan Province,China(Grant Nos.21A480004,152102210306,192102310499,and 19B450001).
文摘The ferromagnetism of two-dimensional(2D)materials has aroused great interest in recent years,which may play an important role in the next-generation magnetic devices.Herein,a series of 2D transition metal-organic framework materials(TM-NH MOF,TM=Sc-Zn)are designed,and their electronic and magnetic characters are systematically studied by means of first-principles calculations.Their structural stabilities are examined through binding energies and ab-initio molecular dynamics simulations.Their optimized lattice constants are correlated to the central TM atoms.These 2D TM-NH MOF nanosheets exhibit various electronic and magnetic performances owing to the effective charge transfer and interaction between TM atoms and graphene linkers.Interestingly,Ni-and Zn-NH MOFs are nonmagnetic semiconductors(SM)with band gaps of 0.41 eV and 0.61 eV,respectively.Co-and Cu-NH MOFs are bipolar magnetic semiconductors(BMS),while Fe-NH MOF monolayer is a half-semiconductor(HSM).Furthermore,the elastic strain could tune their magnetic behaviors and transformation,which ascribes to the charge redistribution of TM-3d states.This work predicts several new 2D magnetic MOF materials,which are promising for applications in spintronics and nanoelectronics.
基金supported by the National Natural Science Foundation of China (21901088, 21901089, 22161021, 21971091)the Natural Science Foundation of Jiangxi Province(20192ACB20013)+1 种基金support of Jiangxi Province (jxsq2018106041)the “Young Elite Scientists Sponsorship Program” by CAST。
文摘It is critical to synthesize high-efficiency electrocatalysts to boost the performance of water splitting to meet the requirements of industrial applications. Metal-organic frameworks(MOFs) can function as ideal molecular platforms for the design of highly reactive transition metal phosphides(TMPs), a kind of candidates for high-efficiently electrocatalytic water splitting. The intrinsic activity of the electrocatalysts can be greatly improved via modulating the electronic structure of the catalytic center through the MOF precursors/templates. Moreover, the carbon layer converted in-situ by the organic ligands can not only protect the TMPs from being degraded in the harsh electrochemical environments, but also avoid agglomeration of the catalysts, thereby promoting their activities and stabilities. Furthermore,heteroatom-containing ligands can incorporate N, S or P, etc. atoms into the carbon matrixes after conversion, regulating the coordination microenvironments of the active centers as well as their electronic structures. In this review, we first summarized the latest developments in MOF-derived TMPs by the unique advantages in metal, organic ligand, and morphology regulations for electrocatalytic water splitting. Secondly, we concluded the critical scientific issues currently facing for designing state-of-the-art TMP-based electrocatalysts. Finally, we presented an outlook on this research area, encompassing electrocatalyst construction, catalytic mechanism research, etc.
基金Changjiang Scholars Program of the Ministry of Education,Grant/Award Number:Q2018270Outstanding Youth Funding of Anhui Province,Grant/Award Number:OUFAH 1908085J10+2 种基金Jiangsu Students'Innovation and Entrepreneurship Training Program,Grant/Award Number:202111117079YNatural Science Foundation of Jiangsu Province,Grant/Award Number:BK20200044National Natural Science Foundation of China,Grant/Award Numbers:NSFC 21671004,NSFC 21975001,NSFC U1904215。
文摘The ferrocene(Fc)-based metal-organic frameworks(MOFs)are regarded as compelling platforms for the construction of efficient and robust oxygen evolution reaction(OER)electrocatalysts due to their superior conductivity and flexible electronic structure.Herein,density functional theory simulations were addressed to predict the electronic structure regulations of CoFc-MOF by nickel doping,which demonstrated that the well-proposed CoNiFc-MOFs delivered a small energy barrier,promoted conductivity,and well-regulated d-band center.Inspired by these,a series of sea-urchin-like CoNiFc-MOFs were successfully synthesized via a facile solvothermal method.Moreover,the synchrotron X-ray and X-ray photoelectron spectroscopy measurements manifested that the introduction of nickel could tailor the electronic structure of the catalyst and induce the directional transfer of electrons,thus optimizing the rate-determining step of^(*)O→^(*)OOH during the OER process and yielding decent overpotentials of 209 and 252 mV at 10 and 200 mA cm^(−2),respectively,with a small Tafel slope of 39 mV dec^(−1).This work presents a new paradigm for developing highly efficient and durable MOF-based electrocatalysts for OER.
文摘First-row transition metal compounds have been widely explored as oxygen evolution reaction(OER)electrocatalysts due to their impressive performance in this application.However,the activity trends of these electrocatalysts remain elusive due to the effect of inevitable iron impurities in alkaline electrolytes on the OER;the inhomogeneous structure of iron-based(oxy)hydroxides further complicates this situation.Bimetallic metal-organic frameworks(MOFs)have the advantages of well-defined and uniform atomic structures and the tunable coordination environments,allowing the structure-activity relationships of bimetallic sites to be precisely explored.Therefore,we prepared a series of iron-based bimetallic MOFs(denoted as Fe_(2)M-MIL-88B,M=Mn,Co,or Ni)and systematically compared their electrocatalytic performance in the OER in this work.All the bimetallic MOFs exhibited higher OER activity than their monometallic iron-based counterpart,with their activity following the order FeNi>FeCo>FeMn.In an alkaline electrolyte,Fe2Ni-MIL-88B showed the lowest overpotential to achieve a current density of 10 mA cm^(–2)(307 mV)and the smallest Tafel slope(38 mV dec^(–1)).The experimental and calculated results demonstrated that iron and nickel exhibited the strongest coupling effect in the series,leading to modification of the electronic structure,which is crucial for tuning the electrocatalytic activity.
基金supported by the National Natural Science Foundation(No.21271163,No.1232211,No.21571168)the Fundamental Research Funds for the Central Universities(WK2060140021)the CAS/SAFEA International Partnership Program for Creative Research Teams and the Hefei Science Center CAS(2016HSC-IU011)
文摘Cobalt-based nanomaterials have been intensively explored as one of the most promising noble-metal-free oxygen evolution reaction (OER) electrocatalysts. However, most of their performances are still inferior to state-of-the-art precious metals especially for Ru and Ir.Herein, we apply a continuous ion exchange method and further hydrothermal treatment to synthesize the flake-like Ag-CoSO4 nanohybrids beginning from Co-BTC (BTC:benzene-1,3,5-tricarboxylic acid) metal-organic frameworks precursor. The catalyst exhibits superior OER performance under the alkaline electrolyte solution (a low overpotential of 282 mV at 10 mA/cm2 in 1 mol/L KOH), which is even better than RuO2 due to the improved conductivity and rapid electrons transfer process via introducing small amount of Ag. The existence of Ag in the hybrids is beneficial for increasing the Co(IV) concentration, thus promoting the *OOH intermediate formation process. Besides, due to the very low requirement of Ag content (lower than 1 atom%), the cost of the catalyst is also limited. This work provides a new insight for designing of inexpensive OER catalysts with high performance and low cost.
基金funded by National Natural Science Foundation of China(Nos.21906008 and 51571076)Open Project of State Key Laboratory of Urban Water Resource and Environment of Har-bin Institute of Technology(No.HCK201716)+1 种基金Chongqing Basic and Frontier Research Program(cstc2018jcyjAX0774)Science and Technology Research Program of Chongqing Municipal Education Commission(Nos.KJQN201901420 and KJQN202001413).
文摘Hierarchical nanostructure construction and electronic structure engineering are commonly employed to increase the electrocatalytic activity of HER electrocatalysts.Herein,Ni doped Co_(3)S_(4) hierarchical nanosheets on Ti mesh(Ni doped Co_(3)S_(4) HNS/TM)were successfully prepared by using metal organic framework(MOF)as precursor which was synthesized under ambient condition.Characterization results confirmed this structure and Ni incorporation into Co_(3)S_(4) lattice as well as the modified electronic structure of Co_(3)S_(4) by Ni doping.Alkaline HER performance showed that Ni doped Co_(3)S_(4) HNS/TM presented outstanding HER activity with 173 m V overpotential at-10 m A·cm^(-2),surpassing most of metal sulfide-based electrocatalysts.The hierarchical structure,superior electrical conductivity and electronic structure modulation contributed to the accelerated water dissociation and enhanced intrinsic activity.This work provides a new avenue for synthesizing hierarchical nanostructure and simultaneously tuning the electronic structure to promote HER performance,which has potential application in designing highly efficient and cost-effective HER nanostructured electrocatalyst.
基金This work was supported by the National Key R&D Program of China(No.2018YFA0208602)the National Natural Science Foundation of China(No.21825301 and No.22003016)+2 种基金Shanghai Sailing Program(No.20YF1410000)Shanghai Municipal Science and Technology Major Project(No.2018SHZDZX03)Shanghai Science and Technology Committee(No.17520750100).
文摘Symmetric covalent organic framework(COF)photocatalysts generally suffer from inefficient charge separation and short-lived photoexcited states.By performing density functional theory(DFT)and time-dependent density functional theory(TDDFT)calculations,we find that partial substitution with one or two substituents(N or NH_(2))in the linkage of the representative symmetric COF(N_(0)-COF)gives rise to the separation of charge carriers in the resulting COFs(i.e.,N_(1)-COF,N_(2)-COF,(NH_(2))1-N_(0)-COF,and(NH_(2))2-N_(0)-COF).Moreover,we also find that the energy levels of the highest occupied crystal orbital(HOCO)and the lowest unoccupied crystal orbital(LUCO)of the N_(0)-COF can shift away from or toward the vacuum level,depending on the electron-withdrawing or electron-donating characters of the substituent.Therefore,we propose that partial substitution with carefully chosen electron-withdrawing or electron-donating substituents in the linkages of symmetric COFs can lead to efficient charge separation as well as appropriate HOCO and LUCO positions of the generated COFs for specific photocatalytic reactions.The proposed rule can be utilized to further boost the photocatalytic performance of many symmetric COFs.
基金This study was supported by the National Key R&D Program of China(no.2017YFA0207201)the National Natural Science Foundation(nos.21727808,21574065,21604038,21971114,21604040,and 51702155)+1 种基金the National Science Foundation for Distinguished Young Scholars(no.21625401)the Jiangsu Provincial Funds for Natural Science Foundation(nos.BK20160975,BK20160981,and BK20170975).
文摘Selective hydrogenation of alkynes to alkenes remains challenging in the field of catalysis due to the ease of over-hydrogenated of alkynes to alkanes.Favorably,the incorporation of metal nanoparticles(MNPs)into metal-organic frameworks(MOFs)provides an opportunity to adjust the surface electronic properties of MNPs for selective hydrogenation of alkynes.Herein,we used differentmetal-O clusters of MOFs to regulate the electronic status of platinum nanoparticles(Pt NPs)toward overhydrogenation,semihydrogenation,and unhydrogenation of phenylacetylene.Specifically,Pt/Fe-O cluster-based MOFs are found to reduce the electronic density on Pt NPs and inhibit the overhydrogenation of styrene,leading to an 80%increase in selectivity toward a semihydrogenation product(styrene).Meanwhile,Cu-O cluster-based MOFs generate high oxidation states of Pt NPs and release Cu^(2+)ions,which worked together to deactivate Pt NPs in the hydrogenation reaction entirely.Thus,our studies illustrate the critical role of metal-O clusters in governing chemical environments within MOFs for the precise control of selective hydrogenation of alkynes,thereby,offering appealing opportunities for designing MNPs/MOFs catalysts to prompt a variety of reactions.
基金supported by the National Natural Science Foundation of China(No.22178266)the Fundamental Research Funds for the Central Universities,and China Postdoctoral Science Foundation(Nos.2021M691754 and 2023T160369).
文摘Photocatalytic hydrogen generation from hydrogen storage media is an effective and promising approach for the green hydrogen industry as well as for achieving carbon neutrality goals.However,the lower photocatalytic efficiency due to the limited light trapping capacity,low electron transfer rate,and severe aggregation of nanoparticles caused by high surface energy seriously restricts their practical application.Herein,we constructed a series of donor–acceptor(D–A)type covalent organic frameworks to confine ultrafine bimetallic Pt-based nanoclusters for photocatalytic hydrogen generation from ammonia borane(AB)hydrolysis.Under visible light irradiation at 20℃,PtCo_(2)@covalent organic framework(COF)showed the highest photocatalytic activity with a turnover frequency(TOF)of 486 min−1.Experiments and density functional theory(DFT)calculations reveal that the high catalytic activity is mainly attributed to the strong electronic interactions between D–A type COF and ultrafine PtCo_(2)nanoclusters.Specifically,the D–A type COF can significantly enhance the light-trapping ability by fine-tuning the electron-acceptor type in the framework,and accelerate the photogenerated electron transfer from D–A type COF to PtCo_(2)nanocluster,which promotes the adsorption and activation of H_(2)O and AB molecules and accelerates hydrogen release.Furthermore,PtCo_(2)@COF also exhibited ultra-high durability due to the significantly enhanced resistance to nanocluster aggregation caused by the nanopore confinement effect of D–A type COF.We believe that this work will provide a theoretical guide for the rational design of efficient D–A COFbased catalysts for photocatalysis.
基金the financial support provided by the NSFC(No.21531007)the Shaanxi Provincial Natural Science Basic Research Program(No.2019JM-590)the Shaanxi Science and Technology Department(Nos.2022GY-384,2022JBGS2–07,2021LLRH05–21,2022QFY06–06)。
文摘Nitroaromatic hydrogenation catalysis without precious metals remains a longstanding challenge.The rate of electron transfer is the crucial factor affecting hydrogenation catalysis.Herein,an ionic Cd-based metal-organic framework(I-Cd-MOF)exhibiting a unique structure with one-dimensional(1D)opening nanochannels and good electron transfer ability was synthesized for catalyzing hydrogenation of 4-nitrophenol(4-NP).The catalytic activity of the unique I-Cd-MOF without noble metals is detected,which is higher than most reported noble metal catalysts.Remarkably,the reaction rate of I-Cd-MOF(4.28 min^(-1))is about 47.6 times higher than that of the Cd-based neutral MOF(N-Cd-MOF)with the similar crystalline structure.Liquid chromatograph mass spectrometer(LC-MS)and theoretical results demonstrate that 4-NP and five intermediates are stabilized in the channels of I-Cd-MOF,which increases the possibility of contact with H^*and H_(2)g enerated at the Cd sites.The I-Cd-MOF was extended to other nitroaromatic hydrogenation catalysis,which still displays excellent activity.More importantly,the I-MOF@Filter membrane was successfully constructed for continuous hydrogenation catalytic reactions,which maintains a high catalytic performance after 7 cycles of recycling without washing.This work fills in the application of the I-MOFs in hydrogenation catalytic reactions and provides an effective way for the rapid and green degradation of nitroaromatic compounds.
基金financially supported by the National Natural Science Foundation of China(Nos.22225503,U21A20285 and 22375153)the Hubei Provincial Natural Science Foundation of China(No.2023AFA011)the Fundamental Research Funds for Central Universities(No.2042023kf0127)。
文摘Constructing three dimensional(3D)covalent organic frameworks(COFs)through the entanglement of two dimensional(2D)nets is a promising but underdeveloped strategy.Herein,we report the design and synthesis of a fluorine functionalized 3DCOF(3D-An-COF-F)formed by entangled 2D sql nets.The structure of 3D-An-COF-F was determined by the combination of continuous rotation electron diffraction technique and modelling based on the chemical information from real space.Interestingly,compared to the isostructural 3D-An-COF without F atom s,3DAn-COF-F showed an improved CO_(2)sorption ability and higher CO_(2)/N_(2)selectivity.Our study not only demonstrated the generality of constructing 3D COFs with entangled 2D nets by introducing bulky groups vertically in planar building blocks,but also will expand the diversity of 3D COFs for various applications.
文摘With the progress of computer technology, CAD technique is urgent needed. In this paper, we conduct numerical and theoretical analysis and research on computer aided design technique and novel pattern for electronic architectural drawing and perspective. AUTOCAD drawing soRware because of its versatility and easy entry, in engineering has broad user base, but also because of the basis of general drawing software, often cannot directly use of the existing order efficiently complete professional drawing. We modify the current pattern and introduce our proposed pattern for advancement. The experiment proves the effectiveness of the pattern. In addition, we will conduct more insightful research in the future to nolish the current anoroach.
基金financial support provided by National Natural Science Foundation of China(52303283,52372232,52064049)the Major Science and Technology Projects of Yunnan Province(202302AB080019-3)+2 种基金National Natural Science Foundation of Yunnan Province(202301AS070040,202401AU070201)the Analysis and Measurements Center of Yunnan University for the sample testing servicethe Electron Microscope Center of Yunnan University for the support of this work.
文摘Regulation the electronic density of solid-state electrolyte by donor–acceptor(D–A)system can achieve highly-selective Li^(+)transportation and conduction in solid-state Li metal batteries.This study reports a high-performance solid-state electrolyte thorough D–A-linked covalent organic frameworks(COFs)based on intramolecular charge transfer interactions.Unlike other reported COFbased solid-state electrolyte,the developed concept with D–A-linked COFs not only achieves electronic modulation to promote highly-selective Li^(+)migration and inhibit Li dendrite,but also offers a crucial opportunity to understand the role of electronic density in solid-state Li metal batteries.The introduced strong electronegativity F-based ligand in COF electrolyte results in highlyselective Li^(+)(transference number 0.83),high ionic conductivity(6.7×10^(-4)S cm^(−1)),excellent cyclic ability(1000 h)in Li metal symmetric cell and high-capacity retention in Li/LiFePO_(4)cell(90.8%for 300 cycles at 5C)than substituted C-and N-based ligands.This is ascribed to outstanding D–A interaction between donor porphyrin and acceptor F atoms,which effectively expedites electron transferring from porphyrin to F-based ligand and enhances Li^(+)kinetics.Consequently,we anticipate that this work creates insight into the strategy for accelerating Li^(+)conduction in high-performance solid-state Li metal batteries through D–A system.