In view of the omnipresence of electronic article surveillance (EAS) systems in daily life and the increasing number of patients with active implants, there is concern about adverse electromagnetic interference in par...In view of the omnipresence of electronic article surveillance (EAS) systems in daily life and the increasing number of patients with active implants, there is concern about adverse electromagnetic interference in particular cardiac pacemakers (CPM) and cardioverter defibrillators (ICD), which due to sensing electrocardial signals are particularly vulnerable. To provide quantitative information interference of monopolar CPM and ICD by EAS systems operating at 8.2MHz radiofrequency electromagnetic fields (EMF) investigations have been performed by exposing numerical anatomical models of pacemaker patients with implants at the conventional left or right pectoral sites and at the abdomen to magnetic fields of a simulated EAS gate source. Investigation of normal position in the centre and worst case with the back next to the gate showed that adverse interference such as inadequate sensing need not be expected at any position. This applies for conventional sensing thresholds even if the exposure span of existing EAS systems is taken into account. However, if full use is made of the newly expanded exposure budget, adverse interference cannot be excluded.展开更多
文摘In view of the omnipresence of electronic article surveillance (EAS) systems in daily life and the increasing number of patients with active implants, there is concern about adverse electromagnetic interference in particular cardiac pacemakers (CPM) and cardioverter defibrillators (ICD), which due to sensing electrocardial signals are particularly vulnerable. To provide quantitative information interference of monopolar CPM and ICD by EAS systems operating at 8.2MHz radiofrequency electromagnetic fields (EMF) investigations have been performed by exposing numerical anatomical models of pacemaker patients with implants at the conventional left or right pectoral sites and at the abdomen to magnetic fields of a simulated EAS gate source. Investigation of normal position in the centre and worst case with the back next to the gate showed that adverse interference such as inadequate sensing need not be expected at any position. This applies for conventional sensing thresholds even if the exposure span of existing EAS systems is taken into account. However, if full use is made of the newly expanded exposure budget, adverse interference cannot be excluded.