Digital image stabilization technique plays important roles in video surveillance and object acquisition.Many useful electronic image stabilization algorithms have been studied.A real-time algorithm is proposed based ...Digital image stabilization technique plays important roles in video surveillance and object acquisition.Many useful electronic image stabilization algorithms have been studied.A real-time algorithm is proposed based on field image gray projection which enables the regional odd and even field image to be projected into x and y directions and thus to get the regional gray projection curves in x and y directions,respectively.For the odd field image channel,motion parameters can be estimated via iterative minimum absolute difference based on two successive field image regional gray projection curves.Then motion compensations can be obtained after using the Kalman filter method.Finally,the odd field image is adjusted according to the compensations.In the mean time,motion compensation is applied to the even field image channel with the odd field image gray projection curves of the current frame.By minimizing absolute difference between odd and even field image gray projection curves of the current frame,the inter-field motion parameters can be estimated.Therefore,the even field image can be adjusted by combining the inter-field motion parameters and the odd field compensations.Finally,the stabilized image sequence can be obtained by synthesizing the adjusted odd and even field images.Experimental results show that the proposed algorithm can run in real-time and have a good stabilization performance.In addition,image blurring can be improved.展开更多
In this paper, the dielectric properties of CO2, CO2/air, CO2/O2, CO2/N2, CO2/CF4, CO2/CH4, CO2/He, C02/H2, CO2/NH3 and CO2/CO were investigated based on the Boltzmann equation analysis, in which the reduced critical ...In this paper, the dielectric properties of CO2, CO2/air, CO2/O2, CO2/N2, CO2/CF4, CO2/CH4, CO2/He, C02/H2, CO2/NH3 and CO2/CO were investigated based on the Boltzmann equation analysis, in which the reduced critical electric field strength (E/N)cr of the gases was derived from the calculated electron energy distribution function (EEDF) by solv- ing the Boltzmann transport equation. In this work, it should be noted that the fundamental data were carefully selected by the published experimental results and calculations to ensure the validity of the calculation. The results indicate that if He, H2, N2 and CH4, in which there axe high ionization coefficients or a lack of attachment reactions, are added into CO2, the dielectric properties will decrease. On the other hand, air, O2, NH3 and CFa (ranked in terms of (E/N)cr value in increasing order) have the potential to improve the dielectric property of CO2 at room temperature.展开更多
A single electron transistor based on a silicon-on-insulator is successfully fabricated with electron-beam nano- lithography, inductively coupled plasma etching, thermal oxidation and other techniques. The unique desi...A single electron transistor based on a silicon-on-insulator is successfully fabricated with electron-beam nano- lithography, inductively coupled plasma etching, thermal oxidation and other techniques. The unique design of the pattern inversion is used, and the pattern is transferred to be negative in the electron-beam lithography step. The oxidation process is used to form the silicon oxide tunneling barriers, and to further reduce the effective size of the quantum dot. Combinations of these methods offer advantages of good size controllability and accuracy, high reproducibility, low cost, large-area contacts, allowing batch fabrication of single electron transistors and good integration with a radio-frequency tank circuit. The fabricated single electron transistor with a quantum dot about 50nto in diameter is demonstrated to operate at temperatures up to 70K. The charging energy of the Coulomb island is about 12.5meV.展开更多
We demonstrate the fabrication of a single electron transistor device based on a single ultra-small silicon quantum dot connected to a gold break junction with a nanometer scale separation. The gold break junction is ...We demonstrate the fabrication of a single electron transistor device based on a single ultra-small silicon quantum dot connected to a gold break junction with a nanometer scale separation. The gold break junction is created through a controllable electromigration process and the individual silicon quantum dot in the junction is deter- mined to be a Si 170 cluster. Differential conductance as a function of the bias and gate voltage clearly shows the Coulomb diamond which confirms that the transport is dominated by a single silicon quantum dot. It is found that the charging energy can be as large as 300meV, which is a result of the large capacitance of a small silicon quantum dot (-1.8 nm). This large Coulomb interaction can potentially enable a single electron transistor to work at room temperature. The level spacing of the excited state can be as large as 10meV, which enables us to manipulate individual spin via an external magnetic field. The resulting Zeeman splitting is measured and the g factor of 2.3 is obtained, suggesting relatively weak electron-electron interaction in the silicon quantum dot which is beneficial for spin coherence time.展开更多
Terahertz (THz) direct detectors based on superconducting niobium nitride (NbN) hot electron bolometers (HEBs) with microwave (MW) biasing are studied. The MW is used to bias the HEB to the optimum point and t...Terahertz (THz) direct detectors based on superconducting niobium nitride (NbN) hot electron bolometers (HEBs) with microwave (MW) biasing are studied. The MW is used to bias the HEB to the optimum point and to readout the impedance changes caused by the incident THz signals. Compared with the thermal biasing method, this method would be more promising in large scale array with simple readout. The used NbN HEB has an excellent performance as heterodyne detector with the double sideband noise temperature (T N) of 403K working at 4.2K and 0.65THz. As a result, the noise equivalent power of 1.5pW/Hz 1/2 and the response time of 64ps are obtained for the direct detectors based on the NbN HEBs and working at 4.2K and 0.65THz.展开更多
As one of the most important tumor-associated antigens of colorectal adenocarcinoma, the carcinoembryonic antigen (CEA) threatens human health seriously ali over the globe. Fast electrical and highly sensitive detec...As one of the most important tumor-associated antigens of colorectal adenocarcinoma, the carcinoembryonic antigen (CEA) threatens human health seriously ali over the globe. Fast electrical and highly sensitive detection of the CEA with A1GaN/GaN high electron mobility transistor is demonstrated experimentally. To achieve a low detection limit, the Au-gated sensing area of the sensor is functionalized with a CEA aptamer instead of the corresponding antibody. The proposed aptasensor has successfully detected different concentrations (ranging from 50picogram/milliliter (pg/ml) to 50 nanogram/milliliter (ng/ml)) of CEA and achieved a detection limit as low as 50pg/ml at Vas = 0.5 V. The drain-source current shows a c/ear increase of 11.5μA under this bias.展开更多
Electronics, such as printed circuit board (PCB), transistor, radio frequency identification (RFID), organic light emitting diode (OLED), solar cells, electronic display, lab on a chip (LOC), sensor, actuator,...Electronics, such as printed circuit board (PCB), transistor, radio frequency identification (RFID), organic light emitting diode (OLED), solar cells, electronic display, lab on a chip (LOC), sensor, actuator, and transducer etc. are playing increasingly important roles in people's daily life. Conventional fabrication strategy towards integrated circuit working steps, generally (IC), requesting at least six consumes too much energy, material and water, and is not environmentally friendly. During the etching process, a large amount of raw materials have to be abandoned. Besides, lithography and microfabrication are typically carried out in "Clean room" which restricts the location of IC fabrication and leads to high production costs. As an alternative, the newly emerging inkjet printing electronics are gradually shaping modem electronic industry and its related areas, owing to the invention of a series of conductive inks composed of polymer matrix, conductive fillers, solvents and additives. Nevertheless, the currently available methods also encoun ter some technical troubles due to the low electroconduc tivity, complex sythesis and sintering process of the inks. As an alternative, a fundamentally different strategy was recently proposed by the authors' lab towards truly direct writing of electronics through introduction of a new class of conductive inks made of low melting point liquid metal or its alloy. The method has been named as direct writingof electronics based on alloy series of functional circuits, and metal (DREAM) ink. A sensors, electronic elements and devices can thus be easily written on various either soft or rigid substrates in a moment. With more and more technical progresses and fundamental discoveries being kept made along this category, it was found that a new area enabled by the DREAM ink electronics is emerging, which would have tremendous impacts on future energy and environmental sciences. In order to promote the research and development along this direction, the present paper is dedicated to draft a comprehensive picture on the DREAM ink technology by summarizing its most basic features and principles. Some important low melting point metal ink candidates, especially the room temperature liquid metals such as gallium and its alloy, were collected, listed and analyzed. The merits and demerits between conventional printed electronics and the new direct writing methods were comparatively evaluated. Important scientific issues and technical strategies to modify the DREAM ink were suggested and potential application areas were proposed. Further, digestions on the impacts of the new technology among energy, health, and environmental sciences were presented. Meanwhile, some practical challenges, such as security, environmentfriendly feature, steady usability, package, etc. were summarized. It is expected that the DREAM ink technology will initiate a series of unconven tional applications in modem society, and even enter into peoples' daily life in the near future.展开更多
With the support by the National Natural Science Foundation of China,the research team led by Prof.Hou Yu(侯宇)and Prof.Yang Huagui(杨化桂)at the Key Laboratory for Ultrafine Materials of Ministry of Education,School ...With the support by the National Natural Science Foundation of China,the research team led by Prof.Hou Yu(侯宇)and Prof.Yang Huagui(杨化桂)at the Key Laboratory for Ultrafine Materials of Ministry of Education,School of Materials Science and Engineering,East China University of Science展开更多
Metal-semiconductor field effect transistors (MESFETs) were fabricated on H-terminated polycrystalline diamond.The DC characteristics of the p-channel MESFET showed a maximum drain current density of 204 mA/mm at a ga...Metal-semiconductor field effect transistors (MESFETs) were fabricated on H-terminated polycrystalline diamond.The DC characteristics of the p-channel MESFET showed a maximum drain current density of 204 mA/mm at a gate-source voltage of 6 V,and a maximum transconductance of 20 mS/mm at a gate-source voltage of 1.5 V.The small signal S-parameters of MESFET with 2 100 m gate width and 2 m gate length were measured.An extrinsic cut-off frequency (fT) of 1.7 GHz and the maximum oscillation frequency (fmax) of 2.5 GHz were obtained,which was the first report on diamond MESFETs with RF characteristics in China.展开更多
基金supported by the National Natural Science Foundation of China(6110118561302145)
文摘Digital image stabilization technique plays important roles in video surveillance and object acquisition.Many useful electronic image stabilization algorithms have been studied.A real-time algorithm is proposed based on field image gray projection which enables the regional odd and even field image to be projected into x and y directions and thus to get the regional gray projection curves in x and y directions,respectively.For the odd field image channel,motion parameters can be estimated via iterative minimum absolute difference based on two successive field image regional gray projection curves.Then motion compensations can be obtained after using the Kalman filter method.Finally,the odd field image is adjusted according to the compensations.In the mean time,motion compensation is applied to the even field image channel with the odd field image gray projection curves of the current frame.By minimizing absolute difference between odd and even field image gray projection curves of the current frame,the inter-field motion parameters can be estimated.Therefore,the even field image can be adjusted by combining the inter-field motion parameters and the odd field compensations.Finally,the stabilized image sequence can be obtained by synthesizing the adjusted odd and even field images.Experimental results show that the proposed algorithm can run in real-time and have a good stabilization performance.In addition,image blurring can be improved.
基金supported in part by the National Key Basic Research Program of China(973 Program)(No.2015CB251002)the Science and Technology Project Funds of the Grid State Corporation of China(No.SGSNK00KJJS1501564)+2 种基金National Natural Science Foundation of China(Nos.51221005,51577145)the Fundamental Research Funds for the Central Universities of Chinathe Program for New Century Excellent Talents in University,China
文摘In this paper, the dielectric properties of CO2, CO2/air, CO2/O2, CO2/N2, CO2/CF4, CO2/CH4, CO2/He, C02/H2, CO2/NH3 and CO2/CO were investigated based on the Boltzmann equation analysis, in which the reduced critical electric field strength (E/N)cr of the gases was derived from the calculated electron energy distribution function (EEDF) by solv- ing the Boltzmann transport equation. In this work, it should be noted that the fundamental data were carefully selected by the published experimental results and calculations to ensure the validity of the calculation. The results indicate that if He, H2, N2 and CH4, in which there axe high ionization coefficients or a lack of attachment reactions, are added into CO2, the dielectric properties will decrease. On the other hand, air, O2, NH3 and CFa (ranked in terms of (E/N)cr value in increasing order) have the potential to improve the dielectric property of CO2 at room temperature.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11074280 and 11403084the Instrument Developing Project of Chinese Academy of Sciences under Grant No YZ201152+2 种基金the Fundamental Research Funds for Central Universities under Grant Nos JUSRP51323B and JUDCF12032the Joint Innovation Project of Jiangsu Province under Grant No BY2013015-19the Graduate Student Innovation Program for Universities of Jiangsu Province under Grant No CXLX12_0724
文摘A single electron transistor based on a silicon-on-insulator is successfully fabricated with electron-beam nano- lithography, inductively coupled plasma etching, thermal oxidation and other techniques. The unique design of the pattern inversion is used, and the pattern is transferred to be negative in the electron-beam lithography step. The oxidation process is used to form the silicon oxide tunneling barriers, and to further reduce the effective size of the quantum dot. Combinations of these methods offer advantages of good size controllability and accuracy, high reproducibility, low cost, large-area contacts, allowing batch fabrication of single electron transistors and good integration with a radio-frequency tank circuit. The fabricated single electron transistor with a quantum dot about 50nto in diameter is demonstrated to operate at temperatures up to 70K. The charging energy of the Coulomb island is about 12.5meV.
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFA0303200the National Natural Science Foundation of China under Grant Nos U1732273,U1732159,91421109,91622115,11522432,11574217 and 61774133the Natural Science Foundation of Jiangsu Province under Grant No BK20160659
文摘We demonstrate the fabrication of a single electron transistor device based on a single ultra-small silicon quantum dot connected to a gold break junction with a nanometer scale separation. The gold break junction is created through a controllable electromigration process and the individual silicon quantum dot in the junction is deter- mined to be a Si 170 cluster. Differential conductance as a function of the bias and gate voltage clearly shows the Coulomb diamond which confirms that the transport is dominated by a single silicon quantum dot. It is found that the charging energy can be as large as 300meV, which is a result of the large capacitance of a small silicon quantum dot (-1.8 nm). This large Coulomb interaction can potentially enable a single electron transistor to work at room temperature. The level spacing of the excited state can be as large as 10meV, which enables us to manipulate individual spin via an external magnetic field. The resulting Zeeman splitting is measured and the g factor of 2.3 is obtained, suggesting relatively weak electron-electron interaction in the silicon quantum dot which is beneficial for spin coherence time.
基金Supported by the National Basic Research Program of China under Grant No 2014CB339800the National Natural Science Foundation of China under Grant Nos 61521001,11173015 and 11227904+1 种基金the Fundamental Research Funds for the Central Universitiesthe Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves of Jiangsu Province
文摘Terahertz (THz) direct detectors based on superconducting niobium nitride (NbN) hot electron bolometers (HEBs) with microwave (MW) biasing are studied. The MW is used to bias the HEB to the optimum point and to readout the impedance changes caused by the incident THz signals. Compared with the thermal biasing method, this method would be more promising in large scale array with simple readout. The used NbN HEB has an excellent performance as heterodyne detector with the double sideband noise temperature (T N) of 403K working at 4.2K and 0.65THz. As a result, the noise equivalent power of 1.5pW/Hz 1/2 and the response time of 64ps are obtained for the direct detectors based on the NbN HEBs and working at 4.2K and 0.65THz.
基金Supported by the National Key Research and Development Program of China under Grant Nos 2016YFB0400104 and 2016YFB0400301the National Natural Science Foundation of China under Grant No 61334002the National Science and Technology Major Project
文摘As one of the most important tumor-associated antigens of colorectal adenocarcinoma, the carcinoembryonic antigen (CEA) threatens human health seriously ali over the globe. Fast electrical and highly sensitive detection of the CEA with A1GaN/GaN high electron mobility transistor is demonstrated experimentally. To achieve a low detection limit, the Au-gated sensing area of the sensor is functionalized with a CEA aptamer instead of the corresponding antibody. The proposed aptasensor has successfully detected different concentrations (ranging from 50picogram/milliliter (pg/ml) to 50 nanogram/milliliter (ng/ml)) of CEA and achieved a detection limit as low as 50pg/ml at Vas = 0.5 V. The drain-source current shows a c/ear increase of 11.5μA under this bias.
文摘Electronics, such as printed circuit board (PCB), transistor, radio frequency identification (RFID), organic light emitting diode (OLED), solar cells, electronic display, lab on a chip (LOC), sensor, actuator, and transducer etc. are playing increasingly important roles in people's daily life. Conventional fabrication strategy towards integrated circuit working steps, generally (IC), requesting at least six consumes too much energy, material and water, and is not environmentally friendly. During the etching process, a large amount of raw materials have to be abandoned. Besides, lithography and microfabrication are typically carried out in "Clean room" which restricts the location of IC fabrication and leads to high production costs. As an alternative, the newly emerging inkjet printing electronics are gradually shaping modem electronic industry and its related areas, owing to the invention of a series of conductive inks composed of polymer matrix, conductive fillers, solvents and additives. Nevertheless, the currently available methods also encoun ter some technical troubles due to the low electroconduc tivity, complex sythesis and sintering process of the inks. As an alternative, a fundamentally different strategy was recently proposed by the authors' lab towards truly direct writing of electronics through introduction of a new class of conductive inks made of low melting point liquid metal or its alloy. The method has been named as direct writingof electronics based on alloy series of functional circuits, and metal (DREAM) ink. A sensors, electronic elements and devices can thus be easily written on various either soft or rigid substrates in a moment. With more and more technical progresses and fundamental discoveries being kept made along this category, it was found that a new area enabled by the DREAM ink electronics is emerging, which would have tremendous impacts on future energy and environmental sciences. In order to promote the research and development along this direction, the present paper is dedicated to draft a comprehensive picture on the DREAM ink technology by summarizing its most basic features and principles. Some important low melting point metal ink candidates, especially the room temperature liquid metals such as gallium and its alloy, were collected, listed and analyzed. The merits and demerits between conventional printed electronics and the new direct writing methods were comparatively evaluated. Important scientific issues and technical strategies to modify the DREAM ink were suggested and potential application areas were proposed. Further, digestions on the impacts of the new technology among energy, health, and environmental sciences were presented. Meanwhile, some practical challenges, such as security, environmentfriendly feature, steady usability, package, etc. were summarized. It is expected that the DREAM ink technology will initiate a series of unconven tional applications in modem society, and even enter into peoples' daily life in the near future.
文摘With the support by the National Natural Science Foundation of China,the research team led by Prof.Hou Yu(侯宇)and Prof.Yang Huagui(杨化桂)at the Key Laboratory for Ultrafine Materials of Ministry of Education,School of Materials Science and Engineering,East China University of Science
文摘Metal-semiconductor field effect transistors (MESFETs) were fabricated on H-terminated polycrystalline diamond.The DC characteristics of the p-channel MESFET showed a maximum drain current density of 204 mA/mm at a gate-source voltage of 6 V,and a maximum transconductance of 20 mS/mm at a gate-source voltage of 1.5 V.The small signal S-parameters of MESFET with 2 100 m gate width and 2 m gate length were measured.An extrinsic cut-off frequency (fT) of 1.7 GHz and the maximum oscillation frequency (fmax) of 2.5 GHz were obtained,which was the first report on diamond MESFETs with RF characteristics in China.