A novel electron beam welder ( EBW) power supply was developed. Compared with the traditional 3-phase contrail 12-pulse rectifying supplies, it requires a much lower step-up ratio transformer, but a much less output...A novel electron beam welder ( EBW) power supply was developed. Compared with the traditional 3-phase contrail 12-pulse rectifying supplies, it requires a much lower step-up ratio transformer, but a much less output ripple voltage can be obtained. The design of the main circuit of this new power supply is based on PWM buck-boost converter topology. In developing the system a fuzzy PID control method is adopted because of the strong non-linearity and big signal working conditions of the circuit system. The SABER-MATLAB models and fuzzy algorithm were used in developing the fuzzy PID controller. The co-simulation and experimental results displayed that the unit introduced herein has the characteristics of high control precision and antinterference capability.展开更多
文摘A novel electron beam welder ( EBW) power supply was developed. Compared with the traditional 3-phase contrail 12-pulse rectifying supplies, it requires a much lower step-up ratio transformer, but a much less output ripple voltage can be obtained. The design of the main circuit of this new power supply is based on PWM buck-boost converter topology. In developing the system a fuzzy PID control method is adopted because of the strong non-linearity and big signal working conditions of the circuit system. The SABER-MATLAB models and fuzzy algorithm were used in developing the fuzzy PID controller. The co-simulation and experimental results displayed that the unit introduced herein has the characteristics of high control precision and antinterference capability.