This study investigated the inductively coupled plasma etching reactor and RF coils developed by North Microelectronic Corporation. Full three dimensional simulations were made at different discharge conditions. The s...This study investigated the inductively coupled plasma etching reactor and RF coils developed by North Microelectronic Corporation. Full three dimensional simulations were made at different discharge conditions. The simulations examined and compared the distribution and non-uniformity of several plasma parameters at a fixed position upon the wafer at different pressures and coil currents. These parameters included electron density, electron temperature and power deposition. The results demonstrate that the electron density, power deposition and uniformity increase with either higher pressure or stronger coil currents, while the electron temperature decreases at this condition. Coil number increase can reduce the non-uniformity of parameters in the spatial distribution. The linear relationship between power deposition and electron density does not always exist. The comparison between simulation results and experiment results is also presented in the paper.展开更多
基金supported by North Microelectronic Corporation (NMC).
文摘This study investigated the inductively coupled plasma etching reactor and RF coils developed by North Microelectronic Corporation. Full three dimensional simulations were made at different discharge conditions. The simulations examined and compared the distribution and non-uniformity of several plasma parameters at a fixed position upon the wafer at different pressures and coil currents. These parameters included electron density, electron temperature and power deposition. The results demonstrate that the electron density, power deposition and uniformity increase with either higher pressure or stronger coil currents, while the electron temperature decreases at this condition. Coil number increase can reduce the non-uniformity of parameters in the spatial distribution. The linear relationship between power deposition and electron density does not always exist. The comparison between simulation results and experiment results is also presented in the paper.