The kagome lattice system has been identified as a fertile ground for the emergence of a number of new quantumstates,including superconductivity,quantum spin liquids,and topological electronic states.This has attracte...The kagome lattice system has been identified as a fertile ground for the emergence of a number of new quantumstates,including superconductivity,quantum spin liquids,and topological electronic states.This has attracted significantinterest within the field of condensed matter physics.Here,we present the observation of an anomalous Hall effect in aniron-based kagome antiferromagnet LuFe_(6)Sn_(6),which implies a non-zero Berry curvature in this compound.By means ofextensive magnetic measurements,a high Neel temperature,T_(N)=552 K,and a spin reorientation behavior were identifiedand a simple temperature-field phase diagram was constructed.Furthermore,this compound was found to exhibit a largeSommerfeld coefficient ofγ=87 mJ·mol^(-1)·K^(-2),suggesting the presence of a strong electronic correlation effect.Ourresearch indicates that LuFe_(6)Sn_(6)is an intriguing compound that may exhibit magnetism,strong correlation,and topologicalstates.展开更多
Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters...Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.展开更多
We investigate the electronic structure ofβ-uranium,which has five nonequivalent atomic sites in its unit cell,by means of the density functional theory plus Hubbard-U correction with U from linear response calculati...We investigate the electronic structure ofβ-uranium,which has five nonequivalent atomic sites in its unit cell,by means of the density functional theory plus Hubbard-U correction with U from linear response calculation.It is found that the 5f electronic correlations inβ-uranium are moderate.More interestingly,their strengths are site selective,depending on the local atomic environment of the present uranium atom.As a consequence,the occupation matrices and partial 5f density of states ofβ-uranium manifest site dependence.In addition,the complicate experimental structure ofβ-uranium could be well reproduced within this theoretical framework.展开更多
The data included in this analysis were from two clinical studies (Study A and Study B), which evaluated JUUL electronic nicotine delivery systems (ENDS) against combustible cigarettes. In both studies, biomarkers of ...The data included in this analysis were from two clinical studies (Study A and Study B), which evaluated JUUL electronic nicotine delivery systems (ENDS) against combustible cigarettes. In both studies, biomarkers of exposure including nicotine equivalents, NNAL, 3-HPMA, MHBMA, S-PMA and COHb were measured. Coefficients of variation (CV) of the biomarkers were calculated and compared. Pearson correlation analysis was used to examine the correlation between the biomarkers. Seven out of the nine biomarkers of exposure in Study A were highly variable (CV > 30%). Higher variability was observed in NNAL, MHBMA and S-PMA than in other biomarkers. After adult cigarette smokers switched from combustible cigarettes to JUUL ENDS, the correlation between nicotine equivalents and other biomarkers became weaker. A similar trend was observed between NNAL and other biomarkers. In Study B, the participants in the 5% ENDS group had higher nicotine equivalent levels than those in the 3% ENDS group. The higher nicotine levels did not result in a substantial increase in the levels of other biomarkers (except 1-OHP). The correlations between nicotine equivalents and 3-HPMA, MHBMA, S-PMA, COHb, HMPMA, and 1-OHP were weak in both the 5% and 3% ENDS groups.展开更多
In an integrated energy system,source-load multiple uncertainties and correlations lead to an over-limit risk in operating state,including voltage,temperature,and pressure over-limit.Therefore,efficient probabilistic ...In an integrated energy system,source-load multiple uncertainties and correlations lead to an over-limit risk in operating state,including voltage,temperature,and pressure over-limit.Therefore,efficient probabilistic energy flow calculation methods and risk assessment theories applicable to integrated energy systems are crucial.This study proposed a probabilistic energy flow calculation method based on polynomial chaos expansion for an electric-heat-gas integrated energy system.The method accurately and efficiently calculated the over-limit probability of the system state variables,considering the coupling conditions of electricity,heat,and gas,as well as uncertainties and correlations in renewable energy unit outputs and multiple types of loads.To further evaluate and quantify the impact of uncertainty factors on the over-limit risk,a global sensitivity analysis method for the integrated energy system based on the analysis of covariance theory is proposed.This method considered the source-load correlation and aimed to identify the key uncertainty factors that influence stable operation.Simulation results demonstrated that the proposed method achieved accuracy to that of the Monte Carlo method while significantly reducing calculation time.It effectively quantified the over-limit risk under the presence of multiple source-load uncertainties.展开更多
Nowadays,AC electronic loads with energy recovery are widely used in the testing of uninterruptible power supplies and power supply equipment.To tackle the problems of control difficulty,strategy complexity,and poor d...Nowadays,AC electronic loads with energy recovery are widely used in the testing of uninterruptible power supplies and power supply equipment.To tackle the problems of control difficulty,strategy complexity,and poor dynamic performance of AC electronic load with energy recovery of the conventional control strategy,a control strategy of AC electronic load with energy recovery based on Finite Control Set Model Predictive Control(FCSMPC)is developed.To further reduce the computation burden of the FCS-MPC,a simplified FCS-MPC with transforming the predicted variables and using sector to select expected state is proposed.Through simplified model and equivalent approximation analysis,the transfer function of the system is obtained,and the stability and robustness of the system are analyzed.The performance of the simplified FCS-MPC is compared with space vector control(SVPWM)and conventional FCS-MPC.The results show that the FCS-MPC method performs better dynamic response and this advantage is more obvious when simulating high power loads.The simplified FCS-MPC shows similar control performance to conventional FCS-MPC at less computation burden.The control performance of the system also shows better simulation results.展开更多
Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)la...Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)laser field is theoretically studied.And the dynamics in two typical collision pathways,recollision-impact-ionization(RII)and recollisionexcitation with subsequent ionization(RESI),is systematically explored.Our results reveal that the V-shaped structure in the correlated momentum distribution is mainly caused by the RII mechanism when the relative amplitude of the OTC laser field is zero,and the first ionized electrons will quickly skim through the nucleus and share few energy with the second electron.As the relative amplitude increases,the V-shaped structure gradually disappears and electrons are concentrated on the diagonal in the electron correlation spectrum,indicating that the energy sharing after electrons collision is symmetric for OTC laser fields with large relative amplitudes.Our studies show that changing the relative amplitude of the OTC laser field can efficiently control the electron–electron collisions and energy exchange efficiency in the NSDI process.展开更多
The properties of absorption spectra are presented and the linear correlations of Hammett constants with the 0-0 transition energy(E_(o,o))of S_←S_o, and the ratios of oscillator strength(f/f)are used to probe the in...The properties of absorption spectra are presented and the linear correlations of Hammett constants with the 0-0 transition energy(E_(o,o))of S_←S_o, and the ratios of oscillator strength(f/f)are used to probe the interactions betwee π-electron of aromatic maerocycles or metal ion of complexes with the sub- stituents on β-position of benzene ring for porphyrin-like maerocyclic compounds.展开更多
Machine learning combined with density functional theory(DFT)enables rapid exploration of catalyst descriptors space such as adsorption energy,facilitating rapid and effective catalyst screening.However,there is still...Machine learning combined with density functional theory(DFT)enables rapid exploration of catalyst descriptors space such as adsorption energy,facilitating rapid and effective catalyst screening.However,there is still a lack of models for predicting adsorption energies on oxides,due to the complexity of elemental species and the ambiguous coordination environment.This work proposes an active learning workflow(LeNN)founded on local electronic transfer features(e)and the principle of coordinate rotation invariance.By accurately characterizing the electron transfer to adsorption site atoms and their surrounding geometric structures,LeNN mitigates abrupt feature changes due to different element types and clarifies coordination environments.As a result,it enables the prediction of^(*)H adsorption energy on binary oxide surfaces with a mean absolute error(MAE)below 0.18 eV.Moreover,we incorporate local coverage(θ_(l))and leverage neutral network ensemble to establish an active learning workflow,attaining a prediction MAE below 0.2 eV for 5419 multi-^(*)H adsorption structures.These findings validate the universality and capability of the proposed features in predicting^(*)H adsorption energy on binary oxide surfaces.展开更多
Urban energy systems(UESs)play a pivotal role in the consumption of clean energy and the promotion of energy cascade utilization.In the context of the construction and operation strategy of UESs with multiple compleme...Urban energy systems(UESs)play a pivotal role in the consumption of clean energy and the promotion of energy cascade utilization.In the context of the construction and operation strategy of UESs with multiple complementary energy resources,a comprehensive assessment of the energy efficiency is of paramount importance.First,a multi-dimensional evaluation system with four primary indexes of energy utilization,environmental protection,system operation,and economic efficiency and 21 secondary indexes is constructed to comprehensively portray the UES.Considering that the evaluation system may contain a large number of indexes and that there is overlapping information among them,an energy efficiency evaluation method based on data processing,dimensionality reduction,integration of combined weights,and gray correlation analysis is proposed.This method can effectively reduce the number of calculations and improve the accuracy of energy efficiency assessments.Third,a demonstration project for a UES in China is presented.The energy efficiency of each scenario is assessed using six operational scenarios.The results show that Scenario 5,in which parks operate independently and investors build shared energy-storage equipment,has the best results and is best suited for green and low-carbon development.The results of the comparative assessment methods show that the proposed method provides a good energy efficiency assessment.This study provides a reference for the optimal planning,construction,and operation of UESs with multiple energy sources.展开更多
The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic...The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic caused an abnormal transition of the electron energy probability function,resulting in abrupt changes in the electron density and temperature.Such changes in the electron energy probability function as well as the electron density and temperature were not observed at the higher pressure of 16 Pa under similar harmonic changes.The phenomena are related to the influence of the second harmonic on stochastic heating,which is determined by both amplitude and the relative phase of the harmonics.The results suggest that the self-excited high-order harmonics must be considered in practical applications of lowpressure radio-frequency capacitively coupled plasmas.展开更多
PrBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(PrBSCF) has attracted much research interest as a potential triple ionic and electronic conductor(TIEC) electrode for protonic ceramic fuel cells(PCFCs). The chemical formula...PrBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(PrBSCF) has attracted much research interest as a potential triple ionic and electronic conductor(TIEC) electrode for protonic ceramic fuel cells(PCFCs). The chemical formula for Pr BSCF is AA'B_(2)O_(5+δ), with Pr(A-site) and Ba/Sr(A'-site) alternately stacked along the c-axis. Due to these structural features, the bulk oxygen ion diffusivity is significantly enhanced through the disorder-free channels in the PrO layer;thus, the A site cations(lanthanide ions) play a pivotal role in determining the overall electrochemical properties of layered perovskites. Consequently, previous research has predominantly focused on the electrical properties and oxygen bulk/surface kinetics of Ln cation effects,whereas the hydration properties for PCFC systems remain unidentified. Here, we thoroughly examined the proton uptake behavior and thermodynamic parameters for the hydration reaction to conclusively determine the changes in the electrochemical performances depending on LnBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(LnBSCF,Ln=Pr, Nd, and Gd) cathodes. At 500 ℃, the quantitative proton concentration of PrBSCF was 2.04 mol% and progressively decreased as the Ln cation size decreased. Similarly, the Gibbs free energy indicated that less energy was required for the formation of protonic defects in the order of Pr BSCF < Nd BSCF < Gd BSCF. To elucidate the close relationship between hydration properties and electrochemical performances in LnBSCF cathodes, PCFC single cell measurements and analysis of the distribution of relaxation time were further investigated.展开更多
Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink...Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink through the current energy generating and distribution system. This led to the exploration of other energy sources of which renewable energy (like thermal, solar and wind energy) is fast becoming an integral part of most energy system. However, this innovative and promising energy source is highly unreliable in maintaining a constant peak power that matches demand. Energy storage systems have thus been highlighted as a solution in managing such imbalances and maintaining the stability of supply. Energy storage technologies absorb and store energy, and release it on demand. This includes gravitational potential energy (pumped hydroelectric), chemical energy (batteries), kinetic energy (flywheels or compressed air), and energy in the form of electrical (capacitors) and magnetic fields. This paper provides a detailed and comprehensive overview of some of the state-of-the-art energy storage technologies, its evolution, classification, and comparison along with various area of applications. Also highlighted in this paper is a plethora of power electronic Interface technologies that plays a significant role in enabling optimum performance and utilization of energy storage systems in different areas of application.展开更多
Recently, we have investigated the hypothesis radiative demonstrating that the two penetrated thicknesses (in air and linen) are not compatible with a single energy of the protons. Furthermore, we deduced that the dis...Recently, we have investigated the hypothesis radiative demonstrating that the two penetrated thicknesses (in air and linen) are not compatible with a single energy of the protons. Furthermore, we deduced that the distribution of energy, released by the above particles, on the burial linen has not a linear trend when the body-burial linen distance changes. Now, in this article we want to deduce the I(z) relationship, between the Image Intensity of the colour produced by protons on a linen and the z distance from the source (of Protons) and the same linen. To achieve the result in an analytical form and make a comparison with the same function extracted from the Shroud, we used the empirical expression Range-Energy for protons in air of Wilson-Brobeck. Thus, we obtain a result I(z) = Im [1 − (z/R)5/9] that is different from the one extracted from the Turin Linen I(z) = IM (1 − z/R0). We have also the same information using the Range-Energy curves for protons of Rogozinski. The result is negative for the radiative hypothesis that is unable to produce the Shroud Body Image. Therefore, to investigate the above unknown process of formation, it is necessary to think about another one.展开更多
ABS is an active safety system which showed a valuable contribution to vehicle safety and stability since it was first introduced. Recently, EVs with in-wheel-motors have drawn increasing attention owing to their grea...ABS is an active safety system which showed a valuable contribution to vehicle safety and stability since it was first introduced. Recently, EVs with in-wheel-motors have drawn increasing attention owing to their greatest advantages. Wheels torques are precisely and swiftly controlled thanks to electric motors and their advanced driving techniques. In this paper, a regenerative-ABS control RABS is proposed for all-in-wheel-motors-drive EVs. The RABS is realized as a pure electronic braking system called brake-by-wire. A coordination strategy is suggested to control RABS compromising three layers. First, wheels slip control takes place, and braking torque is calculated in the higher layer. In the coordinate interlayer, torque is allocated between actuators ensuring maximal energy recovery and vehicle stability. While in the lower layer, actuator control is performed. The RABS effectiveness is validated on a 3-DOF EVSimulink model through two straight-line braking manoeuvres with low and high initial speeds of 50 km/h and 150 km/h, respectively. Both regular and emergency braking manoeuvres are considered with ABS enabled and disabled for comparison. Simulation results showed the high performance of the proposed RABS control in terms of vehicle stability, brake response, stopping distance, and battery re-charging.展开更多
In our previous theoretical study, the theoretical model of thecollision-induced electronic and rotational energy transfer of AB(~1Σ, J) + C(~sl_j) → AB(~1Σ,J′) + C(~sl_(j′)) was presented. To further study the c...In our previous theoretical study, the theoretical model of thecollision-induced electronic and rotational energy transfer of AB(~1Σ, J) + C(~sl_j) → AB(~1Σ,J′) + C(~sl_(j′)) was presented. To further study the collision-induced electronic and rotationalenergy transfer theoretically on AB( ~1Π, J) + C(~sl_j) → AB( ~1Π, J′) + C(~sl_(j′)), atheoretical model is presented, based on the time-dependent first-order Born approximation, takinginto account the anisotropic Lennard-Jones interaction potential and 'straight-line' trajectoryapproximation. The changing tendency of the transitional probabilities with the anisotropicparameter is discussed.展开更多
The effect of a wide variety of metal oxide (MOx) supports has been discussed for CO oxidation on nanoparticulate gold catalysts. By using typical co‐precipitation and deposition–precipitation methods and under id...The effect of a wide variety of metal oxide (MOx) supports has been discussed for CO oxidation on nanoparticulate gold catalysts. By using typical co‐precipitation and deposition–precipitation methods and under identical calcination conditions, supported gold catalysts were prepared on a wide variety of MOx supports, and the temperature for 50%conversion was measured to qualita‐tively evaluate the catalytic activities of these simple MOx and supported Au catalysts. Furthermore, the difference in these temperatures for the simple MOx compared to the supported Au catalysts is plotted against the metal–oxygen binding energies of the support MOx. A clear volcano‐like correla‐tion between the temperature difference and the metal–oxygen binding energies is observed. This correlation suggests that the use of MOx with appropriate metal–oxygen binding energies (300–500 kJ/atom O) greatly improves the catalytic activity of MOx by the deposition of Au NPs.展开更多
Two-dimensional(2D)boron nitride(BN),the so-called“white graphene,”has demonstrated a great potential in various fields,particularly in electronics and energy,by utilizing its wide bandgap(~5.5 eV),superior thermal ...Two-dimensional(2D)boron nitride(BN),the so-called“white graphene,”has demonstrated a great potential in various fields,particularly in electronics and energy,by utilizing its wide bandgap(~5.5 eV),superior thermal stability,high thermal conductance,chemical inertness,and outstanding dielectric properties.However,to further optimize the performances from the view of structure-property relationship,the determinative factors such as crystallite sizes,layer thickness,dispersibility,and surface functionalities should be precisely controlled and adjusted.Therefore,in this review,the synthesis and functionalization methods including“top-down”and“bottom-up”strategies,and non-covalent and covalent modifications for 2D BN are systematically classified and discussed at first,thus catering for the requirements of versatile applications.Then,the progresses of 2D BN applied in the fields of microelectronics such as fieldeffect transistors and dielectric capacitors,energy domains such as thermal energy management and conversion,and batteries and supercapacitors are summarized to highlight the importance of 2D BN.Notably,these contents not only contain the state-of-the-art 2D BN composites,but also bring the current novel design of 2D BN-based microelectronic units.Finally,the challenges and perspectives are proposed to better broaden the scope of this material.Therefore,this review will pave an all-around way for understanding,utilizing,and applying 2D BN in future electronics and energy applications.展开更多
Focused energy delivery(FED) is a technique that can precisely bring energy to the specific region,which arouses wide attention in precision electronic warfare(PREW).This paper first proposes a joint optimization mode...Focused energy delivery(FED) is a technique that can precisely bring energy to the specific region,which arouses wide attention in precision electronic warfare(PREW).This paper first proposes a joint optimization model with respect to the locations of the array and the transmitted signals to improve the performance of FED.As the problem is nonconvex and NP-hard,particle swarm optimization(PSO) is adopted to solve the locations of the array,while designing the transmitted signals under a feasible array is considered as a unimodular quadratic program(UQP) subproblem to calculate the fitness criterion of PSO.In the PSO-UQP framework established,two methods are presented for the UQP subproblem,which are more efficient and more accurate respectively than previous works.Furthermore,a threshold value is set in the framework to determine which method to adopt to take full advantages of the methods above.Meanwhile,we obtain the maximum localization error that FED can tolerate,which is significant for implementing FED in practice.Simulation results are provided to demonstrate the effectiveness of the joint optimization algorithm,and the correctness of the maximum localization error derived.展开更多
With the growing market of wearable devices for smart sensing and personalized healthcare applications,energy storage devices that ensure stable power supply and can be constructed in flexible platforms have attracted...With the growing market of wearable devices for smart sensing and personalized healthcare applications,energy storage devices that ensure stable power supply and can be constructed in flexible platforms have attracted tremendous research interests.A variety of active materials and fabrication strategies of flexible energy storage devices have been intensively studied in recent years,especially for integrated self-powered systems and biosensing.A series of materials and applications for flexible energy storage devices have been studied in recent years.In this review,the commonly adopted fabrication methods of flexible energy storage devices are introduced.Besides,recent advances in integrating these energy devices into flexible self-powered systems are presented.Furthermore,the applications of flexible energy storage devices for biosensing are summarized.Finally,the prospects and challenges of the self-powered sensing system for wearable electronics are discussed.展开更多
基金supported by the National Key Research and Development Program of China(Grant Nos.2022YFA1403400,2019YFA0704900,and 2022YFA1403800)the Fundamental Science Center of the National Natural Science Foundation of China(Grant No.52088101)+4 种基金the National Natural Science Foundation of China(Grant Nos.11974394 and 12174426)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant No.XDB33000000)the CAS Project for Young Scientists in Basic Research(Grant No.YSBR-057)the Synergetic Extreme Condition User Facility(Grant No.SECUF)the Scientific Instrument Developing Project of CAS(Grant No.ZDKYYQ20210003).
文摘The kagome lattice system has been identified as a fertile ground for the emergence of a number of new quantumstates,including superconductivity,quantum spin liquids,and topological electronic states.This has attracted significantinterest within the field of condensed matter physics.Here,we present the observation of an anomalous Hall effect in aniron-based kagome antiferromagnet LuFe_(6)Sn_(6),which implies a non-zero Berry curvature in this compound.By means ofextensive magnetic measurements,a high Neel temperature,T_(N)=552 K,and a spin reorientation behavior were identifiedand a simple temperature-field phase diagram was constructed.Furthermore,this compound was found to exhibit a largeSommerfeld coefficient ofγ=87 mJ·mol^(-1)·K^(-2),suggesting the presence of a strong electronic correlation effect.Ourresearch indicates that LuFe_(6)Sn_(6)is an intriguing compound that may exhibit magnetism,strong correlation,and topologicalstates.
文摘Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.
基金supported by the National Natural Science Foundation of China (Grant Nos.22176181,11874329,11934020,and U1930121)the Foundation of the President of China Academy of Engineering Physics (Grant No.YZJJZQ2022011)the Foundation of Science and Technology on Surface Physics and Chemistry Laboratory (Grant No.WDZC202101)。
文摘We investigate the electronic structure ofβ-uranium,which has five nonequivalent atomic sites in its unit cell,by means of the density functional theory plus Hubbard-U correction with U from linear response calculation.It is found that the 5f electronic correlations inβ-uranium are moderate.More interestingly,their strengths are site selective,depending on the local atomic environment of the present uranium atom.As a consequence,the occupation matrices and partial 5f density of states ofβ-uranium manifest site dependence.In addition,the complicate experimental structure ofβ-uranium could be well reproduced within this theoretical framework.
文摘The data included in this analysis were from two clinical studies (Study A and Study B), which evaluated JUUL electronic nicotine delivery systems (ENDS) against combustible cigarettes. In both studies, biomarkers of exposure including nicotine equivalents, NNAL, 3-HPMA, MHBMA, S-PMA and COHb were measured. Coefficients of variation (CV) of the biomarkers were calculated and compared. Pearson correlation analysis was used to examine the correlation between the biomarkers. Seven out of the nine biomarkers of exposure in Study A were highly variable (CV > 30%). Higher variability was observed in NNAL, MHBMA and S-PMA than in other biomarkers. After adult cigarette smokers switched from combustible cigarettes to JUUL ENDS, the correlation between nicotine equivalents and other biomarkers became weaker. A similar trend was observed between NNAL and other biomarkers. In Study B, the participants in the 5% ENDS group had higher nicotine equivalent levels than those in the 3% ENDS group. The higher nicotine levels did not result in a substantial increase in the levels of other biomarkers (except 1-OHP). The correlations between nicotine equivalents and 3-HPMA, MHBMA, S-PMA, COHb, HMPMA, and 1-OHP were weak in both the 5% and 3% ENDS groups.
基金supported in part by the National Natural Science Foundation of China(No.51977005)。
文摘In an integrated energy system,source-load multiple uncertainties and correlations lead to an over-limit risk in operating state,including voltage,temperature,and pressure over-limit.Therefore,efficient probabilistic energy flow calculation methods and risk assessment theories applicable to integrated energy systems are crucial.This study proposed a probabilistic energy flow calculation method based on polynomial chaos expansion for an electric-heat-gas integrated energy system.The method accurately and efficiently calculated the over-limit probability of the system state variables,considering the coupling conditions of electricity,heat,and gas,as well as uncertainties and correlations in renewable energy unit outputs and multiple types of loads.To further evaluate and quantify the impact of uncertainty factors on the over-limit risk,a global sensitivity analysis method for the integrated energy system based on the analysis of covariance theory is proposed.This method considered the source-load correlation and aimed to identify the key uncertainty factors that influence stable operation.Simulation results demonstrated that the proposed method achieved accuracy to that of the Monte Carlo method while significantly reducing calculation time.It effectively quantified the over-limit risk under the presence of multiple source-load uncertainties.
文摘Nowadays,AC electronic loads with energy recovery are widely used in the testing of uninterruptible power supplies and power supply equipment.To tackle the problems of control difficulty,strategy complexity,and poor dynamic performance of AC electronic load with energy recovery of the conventional control strategy,a control strategy of AC electronic load with energy recovery based on Finite Control Set Model Predictive Control(FCSMPC)is developed.To further reduce the computation burden of the FCS-MPC,a simplified FCS-MPC with transforming the predicted variables and using sector to select expected state is proposed.Through simplified model and equivalent approximation analysis,the transfer function of the system is obtained,and the stability and robustness of the system are analyzed.The performance of the simplified FCS-MPC is compared with space vector control(SVPWM)and conventional FCS-MPC.The results show that the FCS-MPC method performs better dynamic response and this advantage is more obvious when simulating high power loads.The simplified FCS-MPC shows similar control performance to conventional FCS-MPC at less computation burden.The control performance of the system also shows better simulation results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12204132 and 12304376)Excellent Youth Science Foundation of Shandong Province (Overseas) (Grant No.2022HWYQ-073)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.HIT.OCEF.2022042)Natural Science Foundation of Shandong Province (Grant No.ZR2023QA075)。
文摘Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)laser field is theoretically studied.And the dynamics in two typical collision pathways,recollision-impact-ionization(RII)and recollisionexcitation with subsequent ionization(RESI),is systematically explored.Our results reveal that the V-shaped structure in the correlated momentum distribution is mainly caused by the RII mechanism when the relative amplitude of the OTC laser field is zero,and the first ionized electrons will quickly skim through the nucleus and share few energy with the second electron.As the relative amplitude increases,the V-shaped structure gradually disappears and electrons are concentrated on the diagonal in the electron correlation spectrum,indicating that the energy sharing after electrons collision is symmetric for OTC laser fields with large relative amplitudes.Our studies show that changing the relative amplitude of the OTC laser field can efficiently control the electron–electron collisions and energy exchange efficiency in the NSDI process.
文摘The properties of absorption spectra are presented and the linear correlations of Hammett constants with the 0-0 transition energy(E_(o,o))of S_←S_o, and the ratios of oscillator strength(f/f)are used to probe the interactions betwee π-electron of aromatic maerocycles or metal ion of complexes with the sub- stituents on β-position of benzene ring for porphyrin-like maerocyclic compounds.
基金supported by the National Natural Science Foundation of China(No.52488201)the Natural Science Basic Research Program of Shaanxi(No.2024JC-YBMS-284)+1 种基金the Key Research and Development Program of Shaanxi(No.2024GHYBXM-02)the Fundamental Research Funds for the Central Universities.
文摘Machine learning combined with density functional theory(DFT)enables rapid exploration of catalyst descriptors space such as adsorption energy,facilitating rapid and effective catalyst screening.However,there is still a lack of models for predicting adsorption energies on oxides,due to the complexity of elemental species and the ambiguous coordination environment.This work proposes an active learning workflow(LeNN)founded on local electronic transfer features(e)and the principle of coordinate rotation invariance.By accurately characterizing the electron transfer to adsorption site atoms and their surrounding geometric structures,LeNN mitigates abrupt feature changes due to different element types and clarifies coordination environments.As a result,it enables the prediction of^(*)H adsorption energy on binary oxide surfaces with a mean absolute error(MAE)below 0.18 eV.Moreover,we incorporate local coverage(θ_(l))and leverage neutral network ensemble to establish an active learning workflow,attaining a prediction MAE below 0.2 eV for 5419 multi-^(*)H adsorption structures.These findings validate the universality and capability of the proposed features in predicting^(*)H adsorption energy on binary oxide surfaces.
基金supported by the National Natural Science Foundation of China under Grant 51567002 and Grant 50767001.
文摘Urban energy systems(UESs)play a pivotal role in the consumption of clean energy and the promotion of energy cascade utilization.In the context of the construction and operation strategy of UESs with multiple complementary energy resources,a comprehensive assessment of the energy efficiency is of paramount importance.First,a multi-dimensional evaluation system with four primary indexes of energy utilization,environmental protection,system operation,and economic efficiency and 21 secondary indexes is constructed to comprehensively portray the UES.Considering that the evaluation system may contain a large number of indexes and that there is overlapping information among them,an energy efficiency evaluation method based on data processing,dimensionality reduction,integration of combined weights,and gray correlation analysis is proposed.This method can effectively reduce the number of calculations and improve the accuracy of energy efficiency assessments.Third,a demonstration project for a UES in China is presented.The energy efficiency of each scenario is assessed using six operational scenarios.The results show that Scenario 5,in which parks operate independently and investors build shared energy-storage equipment,has the best results and is best suited for green and low-carbon development.The results of the comparative assessment methods show that the proposed method provides a good energy efficiency assessment.This study provides a reference for the optimal planning,construction,and operation of UESs with multiple energy sources.
文摘The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic caused an abnormal transition of the electron energy probability function,resulting in abrupt changes in the electron density and temperature.Such changes in the electron energy probability function as well as the electron density and temperature were not observed at the higher pressure of 16 Pa under similar harmonic changes.The phenomena are related to the influence of the second harmonic on stochastic heating,which is determined by both amplitude and the relative phase of the harmonics.The results suggest that the self-excited high-order harmonics must be considered in practical applications of lowpressure radio-frequency capacitively coupled plasmas.
基金supported by the National Research Foundation (NRF) grant funded by the Korea government (NRF2022R1C1C1007619, NRF-2021M3H4A1A01002921, NRF2021M3I3A1084292)supported by the KIST Institutional Program (Project No. 2E32592-23-069)。
文摘PrBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(PrBSCF) has attracted much research interest as a potential triple ionic and electronic conductor(TIEC) electrode for protonic ceramic fuel cells(PCFCs). The chemical formula for Pr BSCF is AA'B_(2)O_(5+δ), with Pr(A-site) and Ba/Sr(A'-site) alternately stacked along the c-axis. Due to these structural features, the bulk oxygen ion diffusivity is significantly enhanced through the disorder-free channels in the PrO layer;thus, the A site cations(lanthanide ions) play a pivotal role in determining the overall electrochemical properties of layered perovskites. Consequently, previous research has predominantly focused on the electrical properties and oxygen bulk/surface kinetics of Ln cation effects,whereas the hydration properties for PCFC systems remain unidentified. Here, we thoroughly examined the proton uptake behavior and thermodynamic parameters for the hydration reaction to conclusively determine the changes in the electrochemical performances depending on LnBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(LnBSCF,Ln=Pr, Nd, and Gd) cathodes. At 500 ℃, the quantitative proton concentration of PrBSCF was 2.04 mol% and progressively decreased as the Ln cation size decreased. Similarly, the Gibbs free energy indicated that less energy was required for the formation of protonic defects in the order of Pr BSCF < Nd BSCF < Gd BSCF. To elucidate the close relationship between hydration properties and electrochemical performances in LnBSCF cathodes, PCFC single cell measurements and analysis of the distribution of relaxation time were further investigated.
文摘Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink through the current energy generating and distribution system. This led to the exploration of other energy sources of which renewable energy (like thermal, solar and wind energy) is fast becoming an integral part of most energy system. However, this innovative and promising energy source is highly unreliable in maintaining a constant peak power that matches demand. Energy storage systems have thus been highlighted as a solution in managing such imbalances and maintaining the stability of supply. Energy storage technologies absorb and store energy, and release it on demand. This includes gravitational potential energy (pumped hydroelectric), chemical energy (batteries), kinetic energy (flywheels or compressed air), and energy in the form of electrical (capacitors) and magnetic fields. This paper provides a detailed and comprehensive overview of some of the state-of-the-art energy storage technologies, its evolution, classification, and comparison along with various area of applications. Also highlighted in this paper is a plethora of power electronic Interface technologies that plays a significant role in enabling optimum performance and utilization of energy storage systems in different areas of application.
文摘Recently, we have investigated the hypothesis radiative demonstrating that the two penetrated thicknesses (in air and linen) are not compatible with a single energy of the protons. Furthermore, we deduced that the distribution of energy, released by the above particles, on the burial linen has not a linear trend when the body-burial linen distance changes. Now, in this article we want to deduce the I(z) relationship, between the Image Intensity of the colour produced by protons on a linen and the z distance from the source (of Protons) and the same linen. To achieve the result in an analytical form and make a comparison with the same function extracted from the Shroud, we used the empirical expression Range-Energy for protons in air of Wilson-Brobeck. Thus, we obtain a result I(z) = Im [1 − (z/R)5/9] that is different from the one extracted from the Turin Linen I(z) = IM (1 − z/R0). We have also the same information using the Range-Energy curves for protons of Rogozinski. The result is negative for the radiative hypothesis that is unable to produce the Shroud Body Image. Therefore, to investigate the above unknown process of formation, it is necessary to think about another one.
文摘ABS is an active safety system which showed a valuable contribution to vehicle safety and stability since it was first introduced. Recently, EVs with in-wheel-motors have drawn increasing attention owing to their greatest advantages. Wheels torques are precisely and swiftly controlled thanks to electric motors and their advanced driving techniques. In this paper, a regenerative-ABS control RABS is proposed for all-in-wheel-motors-drive EVs. The RABS is realized as a pure electronic braking system called brake-by-wire. A coordination strategy is suggested to control RABS compromising three layers. First, wheels slip control takes place, and braking torque is calculated in the higher layer. In the coordinate interlayer, torque is allocated between actuators ensuring maximal energy recovery and vehicle stability. While in the lower layer, actuator control is performed. The RABS effectiveness is validated on a 3-DOF EVSimulink model through two straight-line braking manoeuvres with low and high initial speeds of 50 km/h and 150 km/h, respectively. Both regular and emergency braking manoeuvres are considered with ABS enabled and disabled for comparison. Simulation results showed the high performance of the proposed RABS control in terms of vehicle stability, brake response, stopping distance, and battery re-charging.
文摘In our previous theoretical study, the theoretical model of thecollision-induced electronic and rotational energy transfer of AB(~1Σ, J) + C(~sl_j) → AB(~1Σ,J′) + C(~sl_(j′)) was presented. To further study the collision-induced electronic and rotationalenergy transfer theoretically on AB( ~1Π, J) + C(~sl_j) → AB( ~1Π, J′) + C(~sl_(j′)), atheoretical model is presented, based on the time-dependent first-order Born approximation, takinginto account the anisotropic Lennard-Jones interaction potential and 'straight-line' trajectoryapproximation. The changing tendency of the transitional probabilities with the anisotropicparameter is discussed.
文摘The effect of a wide variety of metal oxide (MOx) supports has been discussed for CO oxidation on nanoparticulate gold catalysts. By using typical co‐precipitation and deposition–precipitation methods and under identical calcination conditions, supported gold catalysts were prepared on a wide variety of MOx supports, and the temperature for 50%conversion was measured to qualita‐tively evaluate the catalytic activities of these simple MOx and supported Au catalysts. Furthermore, the difference in these temperatures for the simple MOx compared to the supported Au catalysts is plotted against the metal–oxygen binding energies of the support MOx. A clear volcano‐like correla‐tion between the temperature difference and the metal–oxygen binding energies is observed. This correlation suggests that the use of MOx with appropriate metal–oxygen binding energies (300–500 kJ/atom O) greatly improves the catalytic activity of MOx by the deposition of Au NPs.
基金financialy supported by the National Key R@D Program of China (Grants 2016YBF0100100 and 2016YFA0200200)National Natural Science Foundation of China (Grants 51872283, and 21805273)+5 种基金Liaoning Bai Qian Wan Talents Program, Liao Ning Revitalization Talents Program (Grant XLYC1807153)Natural Science Foundation of Liaoning Province, Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (Grant 20180510038)DICP (DICP ZZBS201708, DICP ZZBS201802, and DICP I202032)Dalian National Laboratory For Clean Energy(DNL), CAS,DNL Cooperation Fund,CAS (DNL180310, DNL180308, DNL201912, and DNL201915)the Australian Research Council Discovery Program (DP190103290)Australian Research Council Discovery Early Career Researcher Award scheme (DE150101617)
文摘Two-dimensional(2D)boron nitride(BN),the so-called“white graphene,”has demonstrated a great potential in various fields,particularly in electronics and energy,by utilizing its wide bandgap(~5.5 eV),superior thermal stability,high thermal conductance,chemical inertness,and outstanding dielectric properties.However,to further optimize the performances from the view of structure-property relationship,the determinative factors such as crystallite sizes,layer thickness,dispersibility,and surface functionalities should be precisely controlled and adjusted.Therefore,in this review,the synthesis and functionalization methods including“top-down”and“bottom-up”strategies,and non-covalent and covalent modifications for 2D BN are systematically classified and discussed at first,thus catering for the requirements of versatile applications.Then,the progresses of 2D BN applied in the fields of microelectronics such as fieldeffect transistors and dielectric capacitors,energy domains such as thermal energy management and conversion,and batteries and supercapacitors are summarized to highlight the importance of 2D BN.Notably,these contents not only contain the state-of-the-art 2D BN composites,but also bring the current novel design of 2D BN-based microelectronic units.Finally,the challenges and perspectives are proposed to better broaden the scope of this material.Therefore,this review will pave an all-around way for understanding,utilizing,and applying 2D BN in future electronics and energy applications.
基金Anhui Provincial Natural Science Foundation(Project for Youth:1908085QF252)Research Program of National University of Defense Technology(ZK19-10)。
文摘Focused energy delivery(FED) is a technique that can precisely bring energy to the specific region,which arouses wide attention in precision electronic warfare(PREW).This paper first proposes a joint optimization model with respect to the locations of the array and the transmitted signals to improve the performance of FED.As the problem is nonconvex and NP-hard,particle swarm optimization(PSO) is adopted to solve the locations of the array,while designing the transmitted signals under a feasible array is considered as a unimodular quadratic program(UQP) subproblem to calculate the fitness criterion of PSO.In the PSO-UQP framework established,two methods are presented for the UQP subproblem,which are more efficient and more accurate respectively than previous works.Furthermore,a threshold value is set in the framework to determine which method to adopt to take full advantages of the methods above.Meanwhile,we obtain the maximum localization error that FED can tolerate,which is significant for implementing FED in practice.Simulation results are provided to demonstrate the effectiveness of the joint optimization algorithm,and the correctness of the maximum localization error derived.
基金the Engineering Research Center of Integrated Circuits for Next-Generation Communications Grant(Y01796303)Southern University of Science and Technology Grant(Y01796108,Y01796208).
文摘With the growing market of wearable devices for smart sensing and personalized healthcare applications,energy storage devices that ensure stable power supply and can be constructed in flexible platforms have attracted tremendous research interests.A variety of active materials and fabrication strategies of flexible energy storage devices have been intensively studied in recent years,especially for integrated self-powered systems and biosensing.A series of materials and applications for flexible energy storage devices have been studied in recent years.In this review,the commonly adopted fabrication methods of flexible energy storage devices are introduced.Besides,recent advances in integrating these energy devices into flexible self-powered systems are presented.Furthermore,the applications of flexible energy storage devices for biosensing are summarized.Finally,the prospects and challenges of the self-powered sensing system for wearable electronics are discussed.