A new Monte Carlo simulation of the track structure of low-energy electrons (〈10keV) in liquid water is presented. The feature of the simulation is taken into consideration of the condensed-phase effect of liquid w...A new Monte Carlo simulation of the track structure of low-energy electrons (〈10keV) in liquid water is presented. The feature of the simulation is taken into consideration of the condensed-phase effect of liquid water on electron elastic scattering with the use of the Champion model, while the dielectric response formalism incorporating the optical-data model developed by Emfietzoglou et al. is applied for calculating the electron inelastic scattering. The spatial distributions of energy deposition and inelastic scattering events of low-energy electrons with different primary energies in liquid water are calculated and compared with other theoretical evaluations. The present work shows that the condensed-phase effect of liquid water on electron elastic scattering may be of the influence on the fraction of absorbed energy and distribution of inelastic scattering events at lower primary energies, which also indicate potential effects on the DNA damage induced by low-energy electrons.展开更多
Nanoscale materials often undergo structural,morphological,or chemical changes,especially in solution processes,where heterogeneity and defects may significantly impact the transformation pathways.Liquid phase transmi...Nanoscale materials often undergo structural,morphological,or chemical changes,especially in solution processes,where heterogeneity and defects may significantly impact the transformation pathways.Liquid phase transmission electron microscopy(TEM),allowing us to track dynamic transformations of individual nanoparticles,has become a powerful platform to reveal nanoscale materials transformation pathways and address challenging issues that are hard to approach by other methods.With the development of modern liquid cells,implementing advanced imaging and image analysis methods,and strategically exploring diverse systems,significant advances have been made in liquid phase TEM,including improved high-resolution imaging through liquids at the atomic level and remarkable capabilities in handling complex systems and reactions.In the past more than a decade,we spent much effort in developing and applying liquid phase TEM to elucidate how atomic level heterogeneity and defects impact various physicochemical processes in liquids,such as growth,self-assembly of nanoparticles,etching/corrosion,electrodeposition of alkali metals,catalyst restructuring during reactions,and so on.This article provides a brief review of the liquid phase TEM study of nanoscale materials transformations,focusing on the growth of nanomaterials with distinct shape/hierarchical structures,such as one-dimensional(1D)growth by nanoparticle attachment,two-dimensional(2D)growth with nanoparticles as intermediates,core-shell structure ripening,solid-liquid interfaces including those in batteries and electrocatalysis,highlighting the impacts of heterogeneity and defects on broad nanoscale transformation pathways.展开更多
Effects of dopant properties on microstructures and the electrical characteristics of poly (3-hexylthiophene) (P3HT) films are studied by doping 0.1 wt% 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4?T...Effects of dopant properties on microstructures and the electrical characteristics of poly (3-hexylthiophene) (P3HT) films are studied by doping 0.1 wt% 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4?TCNQ), 6,6-phenyl-C61butyric acid methyl ester (PCBM) and N,N'?Diphenyl-N,N'-(m-tolyl)-benzidine (TPD) into P3HT, respectively. The introductions of various dopants in small quantities increase the field-effect mobility and the I on/Ioff ratio of P3HT thin-film transistors. However, each of dopants shows various effects on the crystalline order and the molecular orientation of P3HT films and the performance of P3HT thin-film transistors. These can be attributed to the various size, shape and energy-level properties of the dopants.展开更多
We fabricate an inverted bottom-emission organic light emitting diode (IBOLED) employing two n-doped layers, i.e., 5 nm lithium carbonate doped PTCDA (1:2 Li2CO3:PTCDA) with 5 nm Li2CO3 doped BCP (1:4 Li2CO3:...We fabricate an inverted bottom-emission organic light emitting diode (IBOLED) employing two n-doped layers, i.e., 5 nm lithium carbonate doped PTCDA (1:2 Li2CO3:PTCDA) with 5 nm Li2CO3 doped BCP (1:4 Li2CO3:BCP) on top, where PTCDA and BCP stand for 3, 4, 9, 10 perylenetetracarboxylic dianhydride and bathcuporine, respectively. Compared to the IBOED using a layer of 10 nm 1:4 Li2CO3:BCP, the one utilizing the two-layer combination of 5 nm 1:2 Li2CO3:PTCDA and 5 nm 1:4 Li2CO3:BCP shows decreasing operation voltage and thereby increasing power efficiency, mainly attributed to the higher electron conductivity of 1:2 Li2CO3:PTCDA than that of 1:4 Li2CO3:BCP. The mechanism of the electron transport through the interface of 1:2 Li2CO3:PTCDA and 1:4 Li2CO3:BCP is also discussed. We provide a simply and effective structure to enhance the current conduction for IBOLEDs.展开更多
The introduction of poly(ether urethane) (PEUR) into polymer electrolyte based on poly(ethylene oxide), LiI and I2, has significantly increased the ionic conductivity by nearly two orders of magnitudes. An incre...The introduction of poly(ether urethane) (PEUR) into polymer electrolyte based on poly(ethylene oxide), LiI and I2, has significantly increased the ionic conductivity by nearly two orders of magnitudes. An increment of I3- diffusion coefficient is also observed. All-solid-state dye-sensitized solar cells are constructed using the polymer electrolytes. It was found that PEUR incorporation has a beneficial effect on the enhancement of open circuit voltage VOC by shifting the band edge of TiO2 to a negative value. Scanningelectron microscope images indicate the perfect interfacial contact between the TiO2 electrode and the blend electrolyte.展开更多
Liquid-phase transmission electron microscopy(LP-TEM)is a powerful tool to gain unique insights into dynamics at the nanoscale.The electron probe,however,can induce significant beam effects that often alter observed p...Liquid-phase transmission electron microscopy(LP-TEM)is a powerful tool to gain unique insights into dynamics at the nanoscale.The electron probe,however,can induce significant beam effects that often alter observed phenomena such as radiolysis of the aqueous phase.The magnitude of beam-induced radiolysis can be assessed by means of radiation chemistry simulations potentially enabling quantitative application of LP-TEM.Unfortunately,the computational cost of these simulations scales with the amount of reactants regarded.To minimize the computational cost,while maintaining accurate predictions,we optimize the parameter space for the solution chemistry of aqueous systems in general and for diluted HAuCl4 solutions in particular.Our results indicate that sparsened kinetic models can accurately describe steady-state formation during LP-TEM and provide a handy prerequisite for efficient multidimensional modeling.We emphasize that the demonstrated workflow can be easily generalized to any kinetic model involving multiple reaction pathways.展开更多
Crystallization in supersaturated solution plays a fundamental role in a variety of natural and industrial processes.However,a thorough understanding of crystallization phenomena in supersaturated solution is still di...Crystallization in supersaturated solution plays a fundamental role in a variety of natural and industrial processes.However,a thorough understanding of crystallization phenomena in supersaturated solution is still difficult because the real-time visualization of crystallization processes under supersaturated condition is a great challenge.Herein,an electron beam-induced crystallization method was carried out in in situ liquid cell transmission electron microscopy(TEM)to visualize the crystallization of NaCl under supersaturated condition in real time.Crucial steps and behaviors in the crystallization of NaCl were captured and clarified,including the growth of NaCl nanocrystals with different morphologies,the formation of initial crystalline seeds from amorphous ion clusters,and the non-equilibrium growth behaviors caused by uneven distribution of precursor ions.This study provides the real-time visualization of detailed nucleation and growth behaviors in NaCl crystallization and brings an ideal strategy for investigating crystallization phenomena under supersaturated condition.展开更多
Two dimensional(2D)nanocrystal functional superlattices with a well controlled structure are of significant importance in photonic,plasmonic and optoelectronic applications and have been well studied,but it remains ch...Two dimensional(2D)nanocrystal functional superlattices with a well controlled structure are of significant importance in photonic,plasmonic and optoelectronic applications and have been well studied,but it remains challenging to understand the formation mechanism and development pathway of the superlattice.In this study,we employed in-situ liquid cell transmission electron microscopy to study the formation of 2D superlattice and its local phase transition from hexagonal-to-square nanocrystal ordering.When colloidal nanocrystals flowed in the solution,long-range ordered hexagonal superlattice could be formed either through shrinking and rearrangement of nanocrystal aggregates or via nanocrystal attachment.As the nanocrystals’shape transformed from truncated octahedral to cube,the local superlattice rearranged to square geometry.Moreover,our observations and quantitative analyses reveal that the phase transition from hexagonal to square mainly originates from the strong van der Waals interactions between the vertical(100)facets.The tracking of 2D cube superlattice formation in real-time could provide unique insights on the governing force of superlattice assembling and stabilization.展开更多
Oxidative etching can be a powerful approach to modify the morphology of nanoscale materials for various applications.Unveiling of the etching mechanisms and morphological evolution during etching is critical.Using th...Oxidative etching can be a powerful approach to modify the morphology of nanoscale materials for various applications.Unveiling of the etching mechanisms and morphological evolution during etching is critical.Using the liquid cell transmission electron microscopy,we investigate the etching behavior of gold nanorods under different electron beam dose rates:caseⅠ,3.5×10^9 Gy s^-1;caseⅡ,1.5×10^10 Gy s^-1;caseⅢ,4.5×10^10 Gy s^-1.The Au nanorod develops facets at the tips(caseⅠ)or adopts a transit ellipsoid shape and eventually dissolves(caseⅡ),depending on the dose rate.The rapid etching under an even higher dose rate(caseⅢ)may lead to the formation of Au3+ion-rich intermediates around the nanorod,which further accelerates the lateral etching and unexpectedly increases the aspect ratio of the nanorod.Our quantitative analysis shows that the critical size of the nanorod,below which the etching rate increases significantly with the reduction of nanorod size,may vary subject to the degree that the system is away from equilibrium.These results provide significant insights into the oxidative etching mechanisms and shed light on the rational design and synthesis of nanostructures.展开更多
The fundamental understanding of the mechanism underlying the early stages of crystallization of hexagonal-close-packed(hcp)nanocrystals is crucial for their synthesis with desired properties,but it remains a signific...The fundamental understanding of the mechanism underlying the early stages of crystallization of hexagonal-close-packed(hcp)nanocrystals is crucial for their synthesis with desired properties,but it remains a significant challenge.Here,we report using in situ liquid cell transmission electron microscopy(TEM)to directly capture the dynamic nucleation process and track the real-time growth pathway of hcp Ni nanocrystals at the atomic scale.It is demonstrated that the growth of amorphous-phase-mediated hcp Ni nanocrystals is from the metal-rich liquid phases.In addition,the reshaped preatomic facet development of a single nanocrystal is also imaged.Theoretical calculations further identify the non-classical features of hcp Ni crystallization.These discoveries could enrich the nucleation and growth model theory and provide useful information for the rational design of synthesis pathways of hcp nanocrystals.展开更多
The system of electrons on liquid helium is an interesting candidate to implement quantum computation, due to the long coherence times of the qubits encoded by the electronic spins. In order to implement the quantum l...The system of electrons on liquid helium is an interesting candidate to implement quantum computation, due to the long coherence times of the qubits encoded by the electronic spins. In order to implement the quantum logic operations between the spins, we propose here a configuration, similarly to the cooled ions in a trap, to couple the distant electrons via manipulating their center of mass (CM) vibrations. First, we show that the electrons could be confined in a common harmonic oscillator potential by using an electrostatic field. Then, with a single current pulse (applied on the micro-electrode below the liquid helium) the distant electronic spins can be coupled simultaneously to the CM mode. Finally, by adiabatically eliminating the CM mode, effective interaction between the distant spins is induced for implementing the desired quantum computing.展开更多
The formation of complex hierarchical nanostructures has attracted a lot of attention from both the fundamental science and potential applications point of view.Spherulite structures with radial fibrillar branches hav...The formation of complex hierarchical nanostructures has attracted a lot of attention from both the fundamental science and potential applications point of view.Spherulite structures with radial fibrillar branches have been found in various solids;however,their growth mechanisms remain poorly understood.Here,we report real time imaging of the formation of two-dimensional(2D)iron oxide spherulite nanostructures in a liquid cell using transmission electron microscopy(TEM).By tracking the growth trajectories,we show the characteristics of the reaction front and growth kinetics.Our observations reveal that the tip of a growing branch splits as the width exceeds certain sizes(5.5–8.5 nm).The radius of a spherulite nanostructure increases linearly with time at the early stage,transitioning to nonlinear growth at the later stage.Furthermore,a thin layer of solid is accumulated at the tip and nanoparticles from secondary nucleation also appear at the growing front which later develop into fibrillar branches.The spherulite nanostructure is polycrystalline with the co-existence of ferrihydrite and Fe3O4 through-out the growth.A growth model is further established,which provides rational explanations on the linear growth at the early stage and the nonlinearity at the later stage of growth.展开更多
文摘A new Monte Carlo simulation of the track structure of low-energy electrons (〈10keV) in liquid water is presented. The feature of the simulation is taken into consideration of the condensed-phase effect of liquid water on electron elastic scattering with the use of the Champion model, while the dielectric response formalism incorporating the optical-data model developed by Emfietzoglou et al. is applied for calculating the electron inelastic scattering. The spatial distributions of energy deposition and inelastic scattering events of low-energy electrons with different primary energies in liquid water are calculated and compared with other theoretical evaluations. The present work shows that the condensed-phase effect of liquid water on electron elastic scattering may be of the influence on the fraction of absorbed energy and distribution of inelastic scattering events at lower primary energies, which also indicate potential effects on the DNA damage induced by low-energy electrons.
基金supported by the U.S.Department of Energy,Office of Science,Office of Basic Energy Sciences(BES),Materials Sciences and Engineering Division under Contract No.DE-AC02-05-CH11231 within the in-situ TEM program(KC22ZH)supported by the U.S.Department of Energy under Contract No.DE-AC02-05CH11231the Kwanjeong Study Abroad Scholarship from the KEF(Kwanjeong Educational Foundation)(KEF-2019).
文摘Nanoscale materials often undergo structural,morphological,or chemical changes,especially in solution processes,where heterogeneity and defects may significantly impact the transformation pathways.Liquid phase transmission electron microscopy(TEM),allowing us to track dynamic transformations of individual nanoparticles,has become a powerful platform to reveal nanoscale materials transformation pathways and address challenging issues that are hard to approach by other methods.With the development of modern liquid cells,implementing advanced imaging and image analysis methods,and strategically exploring diverse systems,significant advances have been made in liquid phase TEM,including improved high-resolution imaging through liquids at the atomic level and remarkable capabilities in handling complex systems and reactions.In the past more than a decade,we spent much effort in developing and applying liquid phase TEM to elucidate how atomic level heterogeneity and defects impact various physicochemical processes in liquids,such as growth,self-assembly of nanoparticles,etching/corrosion,electrodeposition of alkali metals,catalyst restructuring during reactions,and so on.This article provides a brief review of the liquid phase TEM study of nanoscale materials transformations,focusing on the growth of nanomaterials with distinct shape/hierarchical structures,such as one-dimensional(1D)growth by nanoparticle attachment,two-dimensional(2D)growth with nanoparticles as intermediates,core-shell structure ripening,solid-liquid interfaces including those in batteries and electrocatalysis,highlighting the impacts of heterogeneity and defects on broad nanoscale transformation pathways.
文摘Effects of dopant properties on microstructures and the electrical characteristics of poly (3-hexylthiophene) (P3HT) films are studied by doping 0.1 wt% 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4?TCNQ), 6,6-phenyl-C61butyric acid methyl ester (PCBM) and N,N'?Diphenyl-N,N'-(m-tolyl)-benzidine (TPD) into P3HT, respectively. The introductions of various dopants in small quantities increase the field-effect mobility and the I on/Ioff ratio of P3HT thin-film transistors. However, each of dopants shows various effects on the crystalline order and the molecular orientation of P3HT films and the performance of P3HT thin-film transistors. These can be attributed to the various size, shape and energy-level properties of the dopants.
基金Supported by the National Natural Science Foundation of China under Grant No 50803014.
文摘We fabricate an inverted bottom-emission organic light emitting diode (IBOLED) employing two n-doped layers, i.e., 5 nm lithium carbonate doped PTCDA (1:2 Li2CO3:PTCDA) with 5 nm Li2CO3 doped BCP (1:4 Li2CO3:BCP) on top, where PTCDA and BCP stand for 3, 4, 9, 10 perylenetetracarboxylic dianhydride and bathcuporine, respectively. Compared to the IBOED using a layer of 10 nm 1:4 Li2CO3:BCP, the one utilizing the two-layer combination of 5 nm 1:2 Li2CO3:PTCDA and 5 nm 1:4 Li2CO3:BCP shows decreasing operation voltage and thereby increasing power efficiency, mainly attributed to the higher electron conductivity of 1:2 Li2CO3:PTCDA than that of 1:4 Li2CO3:BCP. The mechanism of the electron transport through the interface of 1:2 Li2CO3:PTCDA and 1:4 Li2CO3:BCP is also discussed. We provide a simply and effective structure to enhance the current conduction for IBOLEDs.
基金Supported by the High-Tech Research and Development Program of China under Grant No 2007AA05Z439, the National Basic Research Program of China under Grant No 2006CB202605, and the National Natural Science Foundation of China under Grant No 20873162.
文摘The introduction of poly(ether urethane) (PEUR) into polymer electrolyte based on poly(ethylene oxide), LiI and I2, has significantly increased the ionic conductivity by nearly two orders of magnitudes. An increment of I3- diffusion coefficient is also observed. All-solid-state dye-sensitized solar cells are constructed using the polymer electrolytes. It was found that PEUR incorporation has a beneficial effect on the enhancement of open circuit voltage VOC by shifting the band edge of TiO2 to a negative value. Scanningelectron microscope images indicate the perfect interfacial contact between the TiO2 electrode and the blend electrolyte.
基金A.H.and B.F.acknowledge the financial support by the Federal Ministry of Education and Research(BMBF)of Germany in the programme H2Giga−StacIE(Project Identification Number:03HY103H).P.M.,J.H.,and K.J.J.M.acknowledge funding by the Deutsche Forschungsgemeinschaft(DFG,German Re-search Foundation)Project-ID 431791331SFB 1452.
文摘Liquid-phase transmission electron microscopy(LP-TEM)is a powerful tool to gain unique insights into dynamics at the nanoscale.The electron probe,however,can induce significant beam effects that often alter observed phenomena such as radiolysis of the aqueous phase.The magnitude of beam-induced radiolysis can be assessed by means of radiation chemistry simulations potentially enabling quantitative application of LP-TEM.Unfortunately,the computational cost of these simulations scales with the amount of reactants regarded.To minimize the computational cost,while maintaining accurate predictions,we optimize the parameter space for the solution chemistry of aqueous systems in general and for diluted HAuCl4 solutions in particular.Our results indicate that sparsened kinetic models can accurately describe steady-state formation during LP-TEM and provide a handy prerequisite for efficient multidimensional modeling.We emphasize that the demonstrated workflow can be easily generalized to any kinetic model involving multiple reaction pathways.
基金supported by the National Natural Science Foundation of China(Nos.61974021 and 12234005)New Cornerstone Science Foundation and XPLORER PRIZE,and the Fundamental Research Funds for the Central Universities.
文摘Crystallization in supersaturated solution plays a fundamental role in a variety of natural and industrial processes.However,a thorough understanding of crystallization phenomena in supersaturated solution is still difficult because the real-time visualization of crystallization processes under supersaturated condition is a great challenge.Herein,an electron beam-induced crystallization method was carried out in in situ liquid cell transmission electron microscopy(TEM)to visualize the crystallization of NaCl under supersaturated condition in real time.Crucial steps and behaviors in the crystallization of NaCl were captured and clarified,including the growth of NaCl nanocrystals with different morphologies,the formation of initial crystalline seeds from amorphous ion clusters,and the non-equilibrium growth behaviors caused by uneven distribution of precursor ions.This study provides the real-time visualization of detailed nucleation and growth behaviors in NaCl crystallization and brings an ideal strategy for investigating crystallization phenomena under supersaturated condition.
基金financially supported by the National Key Research and Development Program of China (2017YFA0206500)the National Natural Science Foundation of China (21673198, 21373008 and 21621091)
文摘Two dimensional(2D)nanocrystal functional superlattices with a well controlled structure are of significant importance in photonic,plasmonic and optoelectronic applications and have been well studied,but it remains challenging to understand the formation mechanism and development pathway of the superlattice.In this study,we employed in-situ liquid cell transmission electron microscopy to study the formation of 2D superlattice and its local phase transition from hexagonal-to-square nanocrystal ordering.When colloidal nanocrystals flowed in the solution,long-range ordered hexagonal superlattice could be formed either through shrinking and rearrangement of nanocrystal aggregates or via nanocrystal attachment.As the nanocrystals’shape transformed from truncated octahedral to cube,the local superlattice rearranged to square geometry.Moreover,our observations and quantitative analyses reveal that the phase transition from hexagonal to square mainly originates from the strong van der Waals interactions between the vertical(100)facets.The tracking of 2D cube superlattice formation in real-time could provide unique insights on the governing force of superlattice assembling and stabilization.
基金supported by the National Natural Science Foundation of China(51420105003,11327901,61601116 and 61974021)the National Science Fund for Distinguished Young Scholars(11525415)China Scholarship Council(201806090114)。
文摘Oxidative etching can be a powerful approach to modify the morphology of nanoscale materials for various applications.Unveiling of the etching mechanisms and morphological evolution during etching is critical.Using the liquid cell transmission electron microscopy,we investigate the etching behavior of gold nanorods under different electron beam dose rates:caseⅠ,3.5×10^9 Gy s^-1;caseⅡ,1.5×10^10 Gy s^-1;caseⅢ,4.5×10^10 Gy s^-1.The Au nanorod develops facets at the tips(caseⅠ)or adopts a transit ellipsoid shape and eventually dissolves(caseⅡ),depending on the dose rate.The rapid etching under an even higher dose rate(caseⅢ)may lead to the formation of Au3+ion-rich intermediates around the nanorod,which further accelerates the lateral etching and unexpectedly increases the aspect ratio of the nanorod.Our quantitative analysis shows that the critical size of the nanorod,below which the etching rate increases significantly with the reduction of nanorod size,may vary subject to the degree that the system is away from equilibrium.These results provide significant insights into the oxidative etching mechanisms and shed light on the rational design and synthesis of nanostructures.
基金supported by the National Natural Science Foundation of China(Nos.22001083,52072323,and 52122211)the“Double-First Class”Foundation of Materials and Intelligent Manufacturing Discipline of Xiamen University.J.Y.L.thanks the Research Startup Fund from Harbin Institute of Technology(Shenzhen)with the project number University(No.20210028)the Shenzhen Steady Support Plan(No.GXWD20201230155427003-20200824103000001).
文摘The fundamental understanding of the mechanism underlying the early stages of crystallization of hexagonal-close-packed(hcp)nanocrystals is crucial for their synthesis with desired properties,but it remains a significant challenge.Here,we report using in situ liquid cell transmission electron microscopy(TEM)to directly capture the dynamic nucleation process and track the real-time growth pathway of hcp Ni nanocrystals at the atomic scale.It is demonstrated that the growth of amorphous-phase-mediated hcp Ni nanocrystals is from the metal-rich liquid phases.In addition,the reshaped preatomic facet development of a single nanocrystal is also imaged.Theoretical calculations further identify the non-classical features of hcp Ni crystallization.These discoveries could enrich the nucleation and growth model theory and provide useful information for the rational design of synthesis pathways of hcp nanocrystals.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11204249,11174373the National Fundamental Research Program of China under Grant No.2010CB923104
文摘The system of electrons on liquid helium is an interesting candidate to implement quantum computation, due to the long coherence times of the qubits encoded by the electronic spins. In order to implement the quantum logic operations between the spins, we propose here a configuration, similarly to the cooled ions in a trap, to couple the distant electrons via manipulating their center of mass (CM) vibrations. First, we show that the electrons could be confined in a common harmonic oscillator potential by using an electrostatic field. Then, with a single current pulse (applied on the micro-electrode below the liquid helium) the distant electronic spins can be coupled simultaneously to the CM mode. Finally, by adiabatically eliminating the CM mode, effective interaction between the distant spins is induced for implementing the desired quantum computing.
基金This project was supported by the U.S.Department of Energy(DOE),Office of Science,Office of Basic Energy Sciences(BES),Materials Sciences and Engineering Division under Contract No.DE-AC02-05-CH11231 within the in-situ TEM(KC22ZH)program.Work at the Molecular Foundry was supported by the Office of Science,Office of Basic Energy Sciences,of the U.S.Department of Energy under Contract No.DE-AC02-05CH11231.We acknowledge Gatan Inc.for the advanced K2 IS camera and Dr.Ming Pan and Dr.Cory Czarnik for their help with part of experimental set up in this work.W.J.Z.acknowledges the support from Tianjin University Graduate School International Academic Exchange Fund.M.R.H.was funded by KAUST project under H.M.Z.at UC Berkeley.
文摘The formation of complex hierarchical nanostructures has attracted a lot of attention from both the fundamental science and potential applications point of view.Spherulite structures with radial fibrillar branches have been found in various solids;however,their growth mechanisms remain poorly understood.Here,we report real time imaging of the formation of two-dimensional(2D)iron oxide spherulite nanostructures in a liquid cell using transmission electron microscopy(TEM).By tracking the growth trajectories,we show the characteristics of the reaction front and growth kinetics.Our observations reveal that the tip of a growing branch splits as the width exceeds certain sizes(5.5–8.5 nm).The radius of a spherulite nanostructure increases linearly with time at the early stage,transitioning to nonlinear growth at the later stage.Furthermore,a thin layer of solid is accumulated at the tip and nanoparticles from secondary nucleation also appear at the growing front which later develop into fibrillar branches.The spherulite nanostructure is polycrystalline with the co-existence of ferrihydrite and Fe3O4 through-out the growth.A growth model is further established,which provides rational explanations on the linear growth at the early stage and the nonlinearity at the later stage of growth.