Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au...Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au nanoparticles(NPs)(denoted as HP-Au@CoxSy@ZIF-67)hybrid is synthesized by low-temperature sulfuration treatment.The well-defined macroporous-mesoporous-microporous structure is obtained based on the combination of polystyrene spheres,as-formed CoxSy nanosheets,and ZIF-67 frameworks.This novel three-dimensional hierarchical structure significantly enlarges the three-phase interfaces,accelerating the mass transfer and exposing the active centers for oxygen evolution reaction.The electronic structure of Co is modulated by Au through charge transfer,and a series of experiments,together with theoretical analysis,is performed to ascertain the electronic modulation of Co by Au.Meanwhile,HP-Au@CoxSy@ZIF-67 catalysts with different amounts of Au were synthesized,wherein Au and NaBH4 reductant result in an interesting“competition effect”to regulate the relative ratio of Co^(2+)/Co^(3+),and moderate Au assists the electrochemical performance to reach the highest value.Consequently,the optimized HP-Au@CoxSy@ZIF-67 exhibits a low overpotential of 340 mV at 10 mA cm^(-2)and a Tafel slope of 42 mV dec-1 for OER in 0.1 M aqueous KOH,enabling efficient water splitting and Zn-air battery performance.The work here highlights the pivotal roles of both microstructural and electronic modulation in enhancing electrocatalytic activity and presents a feasible strategy for designing and optimizing advanced electrocatalysts.展开更多
Constructing the efficacious and applicable bifunctional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction(OER) are critical to the develop...Constructing the efficacious and applicable bifunctional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction(OER) are critical to the development of electrochemicallydriven technologies for efficient hydrogen production and avoid CO_(2) emission. Herein, the hetero-nanocrystals between monodispersed Pt(~ 2 nm) and Ni_(3)S_(2)(~ 9.6 nm) are constructed as active electrocatalysts through interfacial electronic modulation, which exhibit superior bi-functional activities for methanol selective oxidation and H_(2) generation. The experimental and theoretical studies reveal that the asymmetrical charge distribution at Pt–Ni_(3)S_(2) could be modulated by the electronic interaction at the interface of dual-monodispersed heterojunctions, which thus promote the adsorption/desorption of the chemical intermediates at the interface. As a result, the selective conversion from CH_(3)OH to formate is accomplished at very low potentials(1.45 V) to attain 100 m A cm^(-2) with high electronic utilization rate(~ 98%) and without CO_(2) emission. Meanwhile, the Pt–Ni_(3)S_(2) can simultaneously exhibit a broad potential window with outstanding stability and large current densities for hydrogen evolution reaction(HER) at the cathode. Further, the excellent bi-functional performance is also indicated in the coupled methanol oxidation reaction(MOR)//HER reactor by only requiring a cell voltage of 1.60 V to achieve a current density of 50 m A cm^(-2) with good reusability.展开更多
Ni-Fe-based catalysts are considered to be among the most active catalysts for the oxygen evolution reaction(OER)under alkaline conditions,with Fe playing a crucial role.However,Fe leaching occurs during the reaction ...Ni-Fe-based catalysts are considered to be among the most active catalysts for the oxygen evolution reaction(OER)under alkaline conditions,with Fe playing a crucial role.However,Fe leaching occurs during the reaction due to thermodynamic instability,which has resulted in conflicting reports within the literature regarding its role.To clarify this point,we propose a strategy consisting of modulating the electronic orbital occupancy to suppress the extensive loss of Fe atoms during the OER process.Theoretical calculations,in-situ X-ray photoelectron spectroscopy,molecular dynamics simulations,and a series of characterization showed that the stable presence of Fe not only accelerates the electron transfer process but also optimizes the reaction barriers of the oxygen evolution intermediates,promoting the phase transition of Fe_(5)Ni_(4)S_(8)to highly active catalytic species.The modulated Fe_(5)Ni_(4)S_(8)-based pre-catalysts exhibit improved OER activity and long-term durability.This study provides a novel perspective for understanding the role of Fe in the OER process.展开更多
High performance can be obtained for the integrated power electronics module(IPEM) by using a three-dimensional packaging structure instead of a planar structure. A three- dimensional packaged half bridge-IPEM (HB-...High performance can be obtained for the integrated power electronics module(IPEM) by using a three-dimensional packaging structure instead of a planar structure. A three- dimensional packaged half bridge-IPEM (HB-IPEM), consisting of two chip scale packaged MOSFETs and the corresponding gate driver and protection circuits, is fabricated at the laboratory. The reliability of the IPEM is controlled from the shape design of solder joints and the control of assembly process parameters. The parasitic parameters are extracted using Agilent 4395A impedance analyzer for building the parasitic parameter model of the HB- IPEM. A 12 V/3 A output synchronous rectifier Buck converter using the HB-IPEM is built to test the electrical performance of the HB-IPEM. Low voltage spikes on two MOSFETs illustrate that the three-dimensional package of the HB-IPEM can decrease parasitic inductance. Temperature distribution simulation results of the HB-IPEM using FLOTHERM are given. Heat dissipation of the solder joints makes the peak junction temperature of the chip drop obviously. The package realizes three-dimensional heat dissipation and has better thermal management.展开更多
The biggest challenge is to develop a low cost and readily available catalyst to replace expensive commercial Pt/C for efficient electrochemical oxygen reduction reaction(ORR).In this research,closo-[B_(12)H_(12)]^(2−...The biggest challenge is to develop a low cost and readily available catalyst to replace expensive commercial Pt/C for efficient electrochemical oxygen reduction reaction(ORR).In this research,closo-[B_(12)H_(12)]^(2−)and 1,10-phenanthroline-iron complexes were introduced into the porous metal-organic framework by impregnation method,and further annealing treatment achieved the successful anchoring of single-atom-Fe in B-doped CN Matrix(FeN4CB).The ORR activity of FeN4CB is comparable to the widely used commercial 20 wt%Pt/C.Where the half-wave potential(E_(1/2))in alkaline medium up to 0.84 V,and even in the face of challenging ORR in acidic medium,the E_(1/2)of ORR driven by FeN4CB is still as high as 0.81 V.When FeN4CB was used as air cathode,the open circuit voltage of Zn-air battery reaches 1.435 V,and the power density and specific capacity are as high as 177 mW cm^(−2)and 800 mAh g_(Zn)^(−1)(theoretical value:820 mAh g_(Zn)^(−1)),respectively.The dazzling point of FeN4CB also appears in the high ORR stability,whether in alkaline or acidic media,E_(1/2)and limiting current density are still close to the initial value after 5000 times cycles.After continuously running the charge-discharge test for 220 h,the charge voltage and discharge voltage of the rechargeable zinc-air battery with FeN4CB as the air cathode maintained the initial state.Density functional theory calculations reveals that introducing B atom to Fe–N4–C can adjust the electronic structure to easily break O=O bond and significantly reduce the energy barrier of the rate-determining step resulting in an improved ORR activity.展开更多
Nowdays,electrocatalytic water splitting has been regarded as one of the most efficient means to approach the urgent energy crisis and environmental issues.However,to speed up the electrocatalytic conversion efficienc...Nowdays,electrocatalytic water splitting has been regarded as one of the most efficient means to approach the urgent energy crisis and environmental issues.However,to speed up the electrocatalytic conversion efficiency of their half reactions including hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),electrocatalysts are usually essential to reduce their kinetic energy barriers.Electrospun nanomaterials possess a unique one‐dimensional structure for outstanding electron and mass transportation,large specific surface area,and the possibilities of flexibility with the porous feature,which are good candidates as efficient electrocatalysts for water splitting.In this review,we focus on the recent research progress on the electrospun nanomaterials‐based electrocatalysts for HER,OER,and overall water splitting reaction.Specifically,the insights of the influence of the electronic modulation and interface engineering of these electrocatalysts on their electrocatalytic activities will be deeply discussed and highlighted.Furthermore,the challenges and development opportunities of the electrospun nanomaterials‐based electrocatalysts for water splitting are featured.Based on the achievements of the significantly enhanced performance from the electronic modulation and interface engineering of these electrocatalysts,full utilization of these materials for practical energy conversion is anticipated.展开更多
Two-dimensional(2D)metal organic frameworks(MOFs)are emerging as low-cost oxygen evolution reaction(OER)electrocatalysts,however,suffering aggregation and poor operation stability.Herein,ultrafine Fe_(3)O_(4) nanopart...Two-dimensional(2D)metal organic frameworks(MOFs)are emerging as low-cost oxygen evolution reaction(OER)electrocatalysts,however,suffering aggregation and poor operation stability.Herein,ultrafine Fe_(3)O_(4) nanoparticles(diameter:6±2 nm)are homogeneously immobilized on 2D Ni based MOFs(Ni-BDC,thickness:5±1 nm)to improve the OER stability.Electronic structure modulation for enhanced catalytic activity is studied via adjusting the amount of Fe_(3)O_(4) nanoparticles on Ni-BDC.The optimal Fe_(3)O_(4)/Ni-BDC achieves the best OER performance with an overpotential of 295 mV at 10 mA cm^(-2),a Tafel slope of 47.8 mV dec^(-1) and a considerable catalytic durability of more than 40 h(less than 5 h for Ni-BDC alone).DFT calculations confirm that the active sites for Fe_(3)O_(4)/Ni-BDC are mainly contributed by Fe species with a higher oxidation state,and the potential-determining step(PDS)is the formation of the adsorbed O*species,which are facilitated in the composite.展开更多
Oxygen evolution reaction(OER)as the foremost stumbling block to generate cost-effective clean fuels has received extensive attention in recent years.But,it still maintains the challenge to manipulate the geometric an...Oxygen evolution reaction(OER)as the foremost stumbling block to generate cost-effective clean fuels has received extensive attention in recent years.But,it still maintains the challenge to manipulate the geometric and electronic structure during single reaction process under the same conditions.Herein,we report a simple self-template strategy to generate honeycomb-like Ni_(2)P/N,P-C hybrids with preferred electronic architecture.Experiments coupled with theoretical results revealed that the synthesized catalyst has two characteristics:firstly,the unique honeycomb-like morphology not only enables the fully utilization of catalytic active sites but also optimizes the mass/electron transportation pathway,which favor the diffusion of electrolyte to accessible active sites.Secondly,N,P-C substrate,on the one hand,largely contributes the electronic distribution near Fermi level(E_(F))thus boosting its electrical conductivity.On the other hand,the support effect result in the upshift of d-band center and electropositivity of Ni sites,which attenuates the energy barrier for the adsorption of OH~àand the formation of*OOH.In consequence,the optimized Ni_(2)P/N,P-C catalysts feature high electrocatalytic activity towards OER(a low overpotential of 252 m V to achieve10 m A cm^(-2))and 10 h long-term stability,the outstanding performance is comparable to most of transition metal catalysts.This work gives a innovative tactics for contriving original OER electrocatalysts,inspirng deeper understanding of fabricating catalysts by combining theoretical simulation and experiment design.展开更多
Herein,we report bifunctional molybdenum-doped nickel sulfide on nickel foam(Mo-NiS_(x)/NF)for magnetic field-enhanced overall water splitting under alkaline conditions.Proper doping of Mo can lead to optimization of ...Herein,we report bifunctional molybdenum-doped nickel sulfide on nickel foam(Mo-NiS_(x)/NF)for magnetic field-enhanced overall water splitting under alkaline conditions.Proper doping of Mo can lead to optimization of the electronic structure of NiS_(x),which accelerates the dissociation of H2O and the adsorption of OH−in the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)processes,respectively.In addition,the magnetically active Mo-NiS_(x)/NF can further enhance the HER and OER activity under an applied magnetic field due to the magnetoresistance effect and the ferromagnetic(FM)exchange-field penetration effect.As a result,Mo-NiS_(x)/NF requires low overpotentials of 307 mV at 50mA cm^(−2)(for OER)and 136 mV at 10mA cm^(−2)(for HER)under a magnetic field of 10000 G.Furthermore,the electrolytic cell constructed by the bifunctional Mo-NiS_(x)/NFs as both the cathode and the anode shows a low cell voltage of 1.594 V at 10 mA cm^(−2)with optimal stability over 60 h under the magnetic field.Simultaneous enhancement of the HER and OER processes by an external magnetic field through rational design of electrocatalysts might be promising for overall water splitting applications.展开更多
Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x) integrated electrode for ...Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x) integrated electrode for water oxidation under normal alkaline test condition(1 M KOH at 25℃)and simulated industrial electrolysis conditions(5 M KOH at 65℃).Such optimized electrode exhibits excellent oxygen evolution reaction(OER)performance with overpotential of 195 and 290 mV at current density of 100 and 400 mA·cm^(-2) under normal alkaline test condition.Notably,only over-potential of 156 and 201 mV were required to achieve the current density of 100 and 400mA·cm^(-2) under simulated industrial electrolysis conditions.No significant degradations were observed after long-term durability tests for both conditions.When using in two-electrode system,the operational voltages of 1.44 and 1.72 V were required to achieve a current density of 10 and 100 mA·cm^(-2) for the overall water splitting test(NiFe LDH-MoS_(x)/INF||20%Pt/C).Additionally,the operational voltage of employing NiFe LDH-MoS_(x)/INF as both cathode and anode merely require 1.52 V at 50mA·cm^(-2) at simulated industrial electrolysis conditions.Notably,a membrane electrode assembly(MEA)for anion exchange membrane water electrolysis(AEMWEs)using NiFe LDH-MoS_(x)/INF as an anode catalyst exhibited an energy conversion efficiency of 71.8%at current density of 400 mA·cm^(-2)in 1 M KOH at 60℃.Further experimental results reveal that sulfurized substrate not only improved the conductivity of NiFe LDH,but also regulated its electronic configurations and atomic composition,leading to the excellent activity.The easy-obtained and cost-effective integrated electrodes are expected to meet the large-scale application of industrial water electrolysis.展开更多
A unique nest-type catalyst has been designed with a nest of oxygen capture surrounding catalytic Pt centers, which shows much promoted performance, on the base of Pt/C catalyst, for oxygen reduction reaction(ORR). Th...A unique nest-type catalyst has been designed with a nest of oxygen capture surrounding catalytic Pt centers, which shows much promoted performance, on the base of Pt/C catalyst, for oxygen reduction reaction(ORR). The nest is constructed with nitrogen-doped carbon matrix(NCM), derived from the controlled carbonization of PANI precursor, to cover Pt/C catalyst. The unique structure of the catalyst(denoted as NCM■ Pt/C) has many merits. Firstly, it can capture oxygen both in air and in acidic electrolyte. Compared with naked Pt/C, it is found that, in air, the oxygen concentration within the porous nest of NCM surrounding Pt/C particles is ~13 times higher than atmospheric oxygen concentration and, in acidic electrolyte, the concentration of activated oxygen over the catalyst NCM■ Pt/C rise to~1.9 times. Secondly, the NCM nest offers a special electronic modulation on Pt centers toward modified ORR kinetics and then catalytic performances. With these merits, compared with Pt/C, the NCM■ Pt/C catalyst shows 3.2 times higher turnover frequency value and 2.9 times enhanced specific activity for ORR with half-wave potential at 0.894 V. After 50,000 sweeping cycles, the NCM■ Pt/C catalyst retains~66% mass activity and still has advantages over the fresh Pt/C catalyst. We envision that the nest-type catalyst provides a new idea for progress of practical Pt/C ORR catalyst.展开更多
The development of zinc ion batteries (ZIBs) with large capacity,high rate,and durable cathode material is a crucial and urgent task.Ni Co_(2)O_(4)(NCO) has received ever-growing interest as a potential cathode materi...The development of zinc ion batteries (ZIBs) with large capacity,high rate,and durable cathode material is a crucial and urgent task.Ni Co_(2)O_(4)(NCO) has received ever-growing interest as a potential cathode material for ZIBs,owing to the high theoretical capacity,rich source,cost-effective,and versatile redox nature.However,due to the slow dynamics of the NCO electrodes,its practical application in highperformance systems is severely limited.Herein,we report an electron density modulated NCO nanosheets (N-NCO NSs) with high-kinetics Zn^(2+)-storage capability as an additive-free cathode for flexible all-solid-state (ASS) ZIBs.By virtue of the enhanced electronic conductivity,improved reaction kinetics,and increased active sites,the optimized N-NCO NSs electrode delivers a high capacity of 357.7 m Ah g^(-1)at 1.0 A g^(-1)and a superior rate capacity of 201.4 m Ah g^(-1)at 20 A g^(-1).More importantly,a flexible ASS ZIBs device is manufactured using a solid polymer electrolyte of a poly (vinylidene fluoride hexafluoropropylene)(PVDF-HFP) film.The flexible ASS ZIBs device shows superb durability with 80.2%capacity retention after 20,000 cycles and works well in the range of-20–70℃.Furthermore,the flexible ASS ZIBs achieves an impressive energy density as high as 578.1 W h kg^(-1)with a peak power density of 33.6 k W kg^(-1),substantially outperforming those latest ZIBs.This work could provide valuable insights for constructing high-kinetics and high-capability cathodes with long-term stability for flexible ASS ZIBs.展开更多
In order to improve the electromagnetic compatibility of powertrain control module (PCM), a system procedure of vehicular PCM electromagnetic alteration is presented in this paper. First of all, the box of the PCM i...In order to improve the electromagnetic compatibility of powertrain control module (PCM), a system procedure of vehicular PCM electromagnetic alteration is presented in this paper. First of all, the box of the PCM is divided into different cabins to eliminate interferences between power supply circuit, analog circuit and digital circuit. Secondly, the working principle and electromagnetic (EM) characters of all the signals adopted by a typical PCM are analyzed. Then according to specific electromagnetic characters, different measures are adopted in corresponding signal process circuits or signal transfer cables, such as ground layout designing, power supply protecting, signal shielding and drive cable interference suppressing. Finally, further improvement may also needed regarding to practical electromagnetic compatibility test effects. The final test shows that, with all the measures mentioned above, the conducted emission of a PCM can be reduced by 20 dB; meanwhile, the radiated emission can be reduced by 30 dB comparing to the original system.展开更多
The conception of virtual separation technology about high low frequency of electronic module was put forward based on the analysis of tactical performance testing of radio fuse.By means of the principle of fuse Doppl...The conception of virtual separation technology about high low frequency of electronic module was put forward based on the analysis of tactical performance testing of radio fuse.By means of the principle of fuse Doppler signal acquisition and injection,the high low frequency of electronic module was virtually separated,and one of important parameters—burst height of radio fuse is tested precisely.展开更多
Employing a simple and efficient method of electro-chemical anodization, ZnO nanowire films are fabricated on Zn foil, and an ultraviolet (UV) sensor prototype is formed for investigating the electronic transport th...Employing a simple and efficient method of electro-chemical anodization, ZnO nanowire films are fabricated on Zn foil, and an ultraviolet (UV) sensor prototype is formed for investigating the electronic transport through back-to-back double junctions. The UV (365 nm) responses of surface-contacted ZnO film are provided by I-V measurement, along with the current evolution process by on/off of UV illumination. In this paper, the back-to-back metal-seconductor-metal (M-S-M) model is used to explain the electronic transport of a ZnO nanowire film based structure. A thermionic-field electron emission mechanism is employed to fit and explain the as-observed UV sensitive electronic transport properties of ZnO film with surface-modulation by oxygen and water molecular coverage.展开更多
Nonlinear features of electron-acoustic shock waves are studied. The Burgers equation is derived and converted to the time fractional Burgers equation by Agrawal's method. Using the Adomian decomposition method, the ...Nonlinear features of electron-acoustic shock waves are studied. The Burgers equation is derived and converted to the time fractional Burgers equation by Agrawal's method. Using the Adomian decomposition method, the shock wave solutions of the time fractional Burgers equation are constructed. The effect of time fractional parameter on the shock wave properties in auroral plasma & investigated.展开更多
Electrocatalytic water splitting is an essential and effective means to produce green hydrogen energy structures,so it is necessary to develop non-precious metal catalysts to replace precious metals.Cobalt-based catal...Electrocatalytic water splitting is an essential and effective means to produce green hydrogen energy structures,so it is necessary to develop non-precious metal catalysts to replace precious metals.Cobalt-based catalysts present effective alternatives due to the diverse valence states,adjustable electronic structures,and plentiful components.In this review,the catalytic mechanisms of hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)for electrocatalytic water splitting are described.Then,the synthesis strategies of various cobalt-based catalysts are systematically summarized,followed by the relationships between the structure and performance clarified.Subsequently,the effects of d-band center and spin regulation for cobalt-based catalysts are also discussed.Furthermore,the dynamic electronic and structural devolution of cobalt-based catalysts are elucidated by combining a series of in-situ characterizations.Finally,we highlight the challenges and future developed directions of cobalt-based catalysts for electrocatalytic water splitting.展开更多
Molybdenum disulfide (MoS2) has been recognized as one of the most promising candidates to replace precious Pt for hydrogen evolution reaction (HER) catalysis, due to the natural abundance, low cost, tunable electroni...Molybdenum disulfide (MoS2) has been recognized as one of the most promising candidates to replace precious Pt for hydrogen evolution reaction (HER) catalysis, due to the natural abundance, low cost, tunable electronic properties, and excellent chemical stability. Although notable processes have been achieved in the past decades, their performance is still far less than that of Pt. Searching effective strategies to boosting their HER performance is still the primary goal. In this review, the recent process of the electronic regulation of MoS2 for HER is summarized, including band structure engineering, electronic state modulation, orbital orientation regulation, interface engineering. Last, the key challenges and opportunities in the development of MoS2-based materials for electrochemical HER are also discussed.展开更多
Constructing heterointerface engineering has becoming an effective and general strategy for developing highly efficient and durable nonnoble electrocatalysts for catalyzing both hydrogen evolution reaction(HER)and oxy...Constructing heterointerface engineering has becoming an effective and general strategy for developing highly efficient and durable nonnoble electrocatalysts for catalyzing both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).In this work,we synthesized a self-supporting heterogeneous NiSe@Co_(0.85)Se/NF electrocatalyst using a facile in situ selenization of transition metal precursors that coated on the nickel foam(NF)in polyol solution.The NF was used as both conductive substrate and nickel source,ensuring superior electronic conductivity for catalyzing.The NiSe@-Co_(0.85)Se/NF exhibited remarkable bifunctional electrocatalytic activities with HER overpotential of 168 mV and OER overpotential of 258 mV to achieve 10 mA·cm-2.The water splitting system using NiSe@Co_(0.85)Se/NF as both anode and cathode electrodes achieved a current density of 10 mA·cm^(-2) at 1.61 V with nearly 100% faradaic efficiency and impressively long-term stability.The efficient bifunctional catalytic performance of NiSe@-Co_(0.85)Se/NF should be attributed to the electronic modulation and synergistic effect between NiSe and Co_(0.85)Se,the intrinsic metallic conductivity and the enlarged active sites exposure.This work provides a facile method for developing heterogeneous bifunctional catalysts for advanced electrochemical energy conversion technologies.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:52102260,52171211,51972220,61903235,U22A20145Shandong Provincial Natural Science Foundation,Grant/Award Numbers:ZR2020QB069,ZR2022ME051+4 种基金National Key Research and Development Program of China,Grant/Award Number:2022YFB4002004Scientific and Technological Innovation Ability Improvement Project of Minor Enterprises in Shandong Province,Grant/Award Number:2022TSGC1021Announce the List and Take Charge Project in Jinan,Grant/Award Number:202214012Major innovation project for integrating science,education and industry of Qilu University of Technology (Shandong Academy of Sciences),Grant/Award Numbers:2022JBZ01-07,2022PY044China Postdoctoral Science Foundation,Grant/Award Number:2022M711545。
文摘Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au nanoparticles(NPs)(denoted as HP-Au@CoxSy@ZIF-67)hybrid is synthesized by low-temperature sulfuration treatment.The well-defined macroporous-mesoporous-microporous structure is obtained based on the combination of polystyrene spheres,as-formed CoxSy nanosheets,and ZIF-67 frameworks.This novel three-dimensional hierarchical structure significantly enlarges the three-phase interfaces,accelerating the mass transfer and exposing the active centers for oxygen evolution reaction.The electronic structure of Co is modulated by Au through charge transfer,and a series of experiments,together with theoretical analysis,is performed to ascertain the electronic modulation of Co by Au.Meanwhile,HP-Au@CoxSy@ZIF-67 catalysts with different amounts of Au were synthesized,wherein Au and NaBH4 reductant result in an interesting“competition effect”to regulate the relative ratio of Co^(2+)/Co^(3+),and moderate Au assists the electrochemical performance to reach the highest value.Consequently,the optimized HP-Au@CoxSy@ZIF-67 exhibits a low overpotential of 340 mV at 10 mA cm^(-2)and a Tafel slope of 42 mV dec-1 for OER in 0.1 M aqueous KOH,enabling efficient water splitting and Zn-air battery performance.The work here highlights the pivotal roles of both microstructural and electronic modulation in enhancing electrocatalytic activity and presents a feasible strategy for designing and optimizing advanced electrocatalysts.
基金the financial support of Guangdong Basic and Applied Basic Research Foundation (No. 2023A1515010940)Shenzhen Natural Science Fund (the Stable Support Plan Program No. 20220809160022001)the Shenzhen Science and Technology Programs (No. ZDSYS20220527171401003, KQTD20190929173914967)。
文摘Constructing the efficacious and applicable bifunctional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction(OER) are critical to the development of electrochemicallydriven technologies for efficient hydrogen production and avoid CO_(2) emission. Herein, the hetero-nanocrystals between monodispersed Pt(~ 2 nm) and Ni_(3)S_(2)(~ 9.6 nm) are constructed as active electrocatalysts through interfacial electronic modulation, which exhibit superior bi-functional activities for methanol selective oxidation and H_(2) generation. The experimental and theoretical studies reveal that the asymmetrical charge distribution at Pt–Ni_(3)S_(2) could be modulated by the electronic interaction at the interface of dual-monodispersed heterojunctions, which thus promote the adsorption/desorption of the chemical intermediates at the interface. As a result, the selective conversion from CH_(3)OH to formate is accomplished at very low potentials(1.45 V) to attain 100 m A cm^(-2) with high electronic utilization rate(~ 98%) and without CO_(2) emission. Meanwhile, the Pt–Ni_(3)S_(2) can simultaneously exhibit a broad potential window with outstanding stability and large current densities for hydrogen evolution reaction(HER) at the cathode. Further, the excellent bi-functional performance is also indicated in the coupled methanol oxidation reaction(MOR)//HER reactor by only requiring a cell voltage of 1.60 V to achieve a current density of 50 m A cm^(-2) with good reusability.
基金financially supported by the Scientific and Technological Development Program of Jilin Province(20220201138GX)the support of the National Key R&D Program of China(No.2022YFA1503801)+1 种基金CAS Project for Young Scientists in Basic Research(No.YSBR-022)the Young Cross Team Project of CAS(No.JCTD-2021-14)。
文摘Ni-Fe-based catalysts are considered to be among the most active catalysts for the oxygen evolution reaction(OER)under alkaline conditions,with Fe playing a crucial role.However,Fe leaching occurs during the reaction due to thermodynamic instability,which has resulted in conflicting reports within the literature regarding its role.To clarify this point,we propose a strategy consisting of modulating the electronic orbital occupancy to suppress the extensive loss of Fe atoms during the OER process.Theoretical calculations,in-situ X-ray photoelectron spectroscopy,molecular dynamics simulations,and a series of characterization showed that the stable presence of Fe not only accelerates the electron transfer process but also optimizes the reaction barriers of the oxygen evolution intermediates,promoting the phase transition of Fe_(5)Ni_(4)S_(8)to highly active catalytic species.The modulated Fe_(5)Ni_(4)S_(8)-based pre-catalysts exhibit improved OER activity and long-term durability.This study provides a novel perspective for understanding the role of Fe in the OER process.
基金Fok Ying Tung Education Foundation(No.91058)the Natural Science Foundation of High Education Institutions of Jiangsu Province(No.08KJD470004)Qing Lan Project of Jiangsu Province of 2008
文摘High performance can be obtained for the integrated power electronics module(IPEM) by using a three-dimensional packaging structure instead of a planar structure. A three- dimensional packaged half bridge-IPEM (HB-IPEM), consisting of two chip scale packaged MOSFETs and the corresponding gate driver and protection circuits, is fabricated at the laboratory. The reliability of the IPEM is controlled from the shape design of solder joints and the control of assembly process parameters. The parasitic parameters are extracted using Agilent 4395A impedance analyzer for building the parasitic parameter model of the HB- IPEM. A 12 V/3 A output synchronous rectifier Buck converter using the HB-IPEM is built to test the electrical performance of the HB-IPEM. Low voltage spikes on two MOSFETs illustrate that the three-dimensional package of the HB-IPEM can decrease parasitic inductance. Temperature distribution simulation results of the HB-IPEM using FLOTHERM are given. Heat dissipation of the solder joints makes the peak junction temperature of the chip drop obviously. The package realizes three-dimensional heat dissipation and has better thermal management.
基金financially supported by the NSFC-Yunnan Joint Foundation(U2002213)the Double Tops Joint Fund of the Yunnan Science and Technology Bureau and Yunnan University(2019FY003025)the‘Double-First Class’University Construction Project(C176220100042 and CZ21623201)。
文摘The biggest challenge is to develop a low cost and readily available catalyst to replace expensive commercial Pt/C for efficient electrochemical oxygen reduction reaction(ORR).In this research,closo-[B_(12)H_(12)]^(2−)and 1,10-phenanthroline-iron complexes were introduced into the porous metal-organic framework by impregnation method,and further annealing treatment achieved the successful anchoring of single-atom-Fe in B-doped CN Matrix(FeN4CB).The ORR activity of FeN4CB is comparable to the widely used commercial 20 wt%Pt/C.Where the half-wave potential(E_(1/2))in alkaline medium up to 0.84 V,and even in the face of challenging ORR in acidic medium,the E_(1/2)of ORR driven by FeN4CB is still as high as 0.81 V.When FeN4CB was used as air cathode,the open circuit voltage of Zn-air battery reaches 1.435 V,and the power density and specific capacity are as high as 177 mW cm^(−2)and 800 mAh g_(Zn)^(−1)(theoretical value:820 mAh g_(Zn)^(−1)),respectively.The dazzling point of FeN4CB also appears in the high ORR stability,whether in alkaline or acidic media,E_(1/2)and limiting current density are still close to the initial value after 5000 times cycles.After continuously running the charge-discharge test for 220 h,the charge voltage and discharge voltage of the rechargeable zinc-air battery with FeN4CB as the air cathode maintained the initial state.Density functional theory calculations reveals that introducing B atom to Fe–N4–C can adjust the electronic structure to easily break O=O bond and significantly reduce the energy barrier of the rate-determining step resulting in an improved ORR activity.
基金This study was financially supported by the National Natural Science Foundation of China(51973079,51773075 and 21875084)the Project of Department of Scienceand Technology of Jilin Province,China(20190101013JH).
文摘Nowdays,electrocatalytic water splitting has been regarded as one of the most efficient means to approach the urgent energy crisis and environmental issues.However,to speed up the electrocatalytic conversion efficiency of their half reactions including hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),electrocatalysts are usually essential to reduce their kinetic energy barriers.Electrospun nanomaterials possess a unique one‐dimensional structure for outstanding electron and mass transportation,large specific surface area,and the possibilities of flexibility with the porous feature,which are good candidates as efficient electrocatalysts for water splitting.In this review,we focus on the recent research progress on the electrospun nanomaterials‐based electrocatalysts for HER,OER,and overall water splitting reaction.Specifically,the insights of the influence of the electronic modulation and interface engineering of these electrocatalysts on their electrocatalytic activities will be deeply discussed and highlighted.Furthermore,the challenges and development opportunities of the electrospun nanomaterials‐based electrocatalysts for water splitting are featured.Based on the achievements of the significantly enhanced performance from the electronic modulation and interface engineering of these electrocatalysts,full utilization of these materials for practical energy conversion is anticipated.
基金support from the Chinese Scholarship Council(201706220080)for W.H.the Natural Science Foundation of Hunan Province(2019JJ50526)for C.P.+1 种基金The Danish Council for Independent Research for the YDUN project(DFF 4093-00297)to J.Z.Villum Experiment(grant No.35844)for X.X.
文摘Two-dimensional(2D)metal organic frameworks(MOFs)are emerging as low-cost oxygen evolution reaction(OER)electrocatalysts,however,suffering aggregation and poor operation stability.Herein,ultrafine Fe_(3)O_(4) nanoparticles(diameter:6±2 nm)are homogeneously immobilized on 2D Ni based MOFs(Ni-BDC,thickness:5±1 nm)to improve the OER stability.Electronic structure modulation for enhanced catalytic activity is studied via adjusting the amount of Fe_(3)O_(4) nanoparticles on Ni-BDC.The optimal Fe_(3)O_(4)/Ni-BDC achieves the best OER performance with an overpotential of 295 mV at 10 mA cm^(-2),a Tafel slope of 47.8 mV dec^(-1) and a considerable catalytic durability of more than 40 h(less than 5 h for Ni-BDC alone).DFT calculations confirm that the active sites for Fe_(3)O_(4)/Ni-BDC are mainly contributed by Fe species with a higher oxidation state,and the potential-determining step(PDS)is the formation of the adsorbed O*species,which are facilitated in the composite.
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment(2017ZX07402001)the Ministry of Science and Technology of China for their financial support and the associated project is the Key Program for International S&T Cooperation Projects(No.2018YFE0124600)。
文摘Oxygen evolution reaction(OER)as the foremost stumbling block to generate cost-effective clean fuels has received extensive attention in recent years.But,it still maintains the challenge to manipulate the geometric and electronic structure during single reaction process under the same conditions.Herein,we report a simple self-template strategy to generate honeycomb-like Ni_(2)P/N,P-C hybrids with preferred electronic architecture.Experiments coupled with theoretical results revealed that the synthesized catalyst has two characteristics:firstly,the unique honeycomb-like morphology not only enables the fully utilization of catalytic active sites but also optimizes the mass/electron transportation pathway,which favor the diffusion of electrolyte to accessible active sites.Secondly,N,P-C substrate,on the one hand,largely contributes the electronic distribution near Fermi level(E_(F))thus boosting its electrical conductivity.On the other hand,the support effect result in the upshift of d-band center and electropositivity of Ni sites,which attenuates the energy barrier for the adsorption of OH~àand the formation of*OOH.In consequence,the optimized Ni_(2)P/N,P-C catalysts feature high electrocatalytic activity towards OER(a low overpotential of 252 m V to achieve10 m A cm^(-2))and 10 h long-term stability,the outstanding performance is comparable to most of transition metal catalysts.This work gives a innovative tactics for contriving original OER electrocatalysts,inspirng deeper understanding of fabricating catalysts by combining theoretical simulation and experiment design.
基金National Natural Science Foundation of China,Grant/Award Numbers:21871065,22071038Heilongjiang Touyan Team,Grant/Award Number:HITTY‐20190033Interdisciplinary Research Foundation of HIT,Grant/Award Number:IR2021205。
文摘Herein,we report bifunctional molybdenum-doped nickel sulfide on nickel foam(Mo-NiS_(x)/NF)for magnetic field-enhanced overall water splitting under alkaline conditions.Proper doping of Mo can lead to optimization of the electronic structure of NiS_(x),which accelerates the dissociation of H2O and the adsorption of OH−in the hydrogen evolution reaction(HER)and the oxygen evolution reaction(OER)processes,respectively.In addition,the magnetically active Mo-NiS_(x)/NF can further enhance the HER and OER activity under an applied magnetic field due to the magnetoresistance effect and the ferromagnetic(FM)exchange-field penetration effect.As a result,Mo-NiS_(x)/NF requires low overpotentials of 307 mV at 50mA cm^(−2)(for OER)and 136 mV at 10mA cm^(−2)(for HER)under a magnetic field of 10000 G.Furthermore,the electrolytic cell constructed by the bifunctional Mo-NiS_(x)/NFs as both the cathode and the anode shows a low cell voltage of 1.594 V at 10 mA cm^(−2)with optimal stability over 60 h under the magnetic field.Simultaneous enhancement of the HER and OER processes by an external magnetic field through rational design of electrocatalysts might be promising for overall water splitting applications.
文摘Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x) integrated electrode for water oxidation under normal alkaline test condition(1 M KOH at 25℃)and simulated industrial electrolysis conditions(5 M KOH at 65℃).Such optimized electrode exhibits excellent oxygen evolution reaction(OER)performance with overpotential of 195 and 290 mV at current density of 100 and 400 mA·cm^(-2) under normal alkaline test condition.Notably,only over-potential of 156 and 201 mV were required to achieve the current density of 100 and 400mA·cm^(-2) under simulated industrial electrolysis conditions.No significant degradations were observed after long-term durability tests for both conditions.When using in two-electrode system,the operational voltages of 1.44 and 1.72 V were required to achieve a current density of 10 and 100 mA·cm^(-2) for the overall water splitting test(NiFe LDH-MoS_(x)/INF||20%Pt/C).Additionally,the operational voltage of employing NiFe LDH-MoS_(x)/INF as both cathode and anode merely require 1.52 V at 50mA·cm^(-2) at simulated industrial electrolysis conditions.Notably,a membrane electrode assembly(MEA)for anion exchange membrane water electrolysis(AEMWEs)using NiFe LDH-MoS_(x)/INF as an anode catalyst exhibited an energy conversion efficiency of 71.8%at current density of 400 mA·cm^(-2)in 1 M KOH at 60℃.Further experimental results reveal that sulfurized substrate not only improved the conductivity of NiFe LDH,but also regulated its electronic configurations and atomic composition,leading to the excellent activity.The easy-obtained and cost-effective integrated electrodes are expected to meet the large-scale application of industrial water electrolysis.
基金supported by the National Natural Science Foundation of China(91963206,21932004)the Ministry of Science and Technology of China(2017YFB0702800)the China Postdoctoral Science Foundation(2021M691512)。
文摘A unique nest-type catalyst has been designed with a nest of oxygen capture surrounding catalytic Pt centers, which shows much promoted performance, on the base of Pt/C catalyst, for oxygen reduction reaction(ORR). The nest is constructed with nitrogen-doped carbon matrix(NCM), derived from the controlled carbonization of PANI precursor, to cover Pt/C catalyst. The unique structure of the catalyst(denoted as NCM■ Pt/C) has many merits. Firstly, it can capture oxygen both in air and in acidic electrolyte. Compared with naked Pt/C, it is found that, in air, the oxygen concentration within the porous nest of NCM surrounding Pt/C particles is ~13 times higher than atmospheric oxygen concentration and, in acidic electrolyte, the concentration of activated oxygen over the catalyst NCM■ Pt/C rise to~1.9 times. Secondly, the NCM nest offers a special electronic modulation on Pt centers toward modified ORR kinetics and then catalytic performances. With these merits, compared with Pt/C, the NCM■ Pt/C catalyst shows 3.2 times higher turnover frequency value and 2.9 times enhanced specific activity for ORR with half-wave potential at 0.894 V. After 50,000 sweeping cycles, the NCM■ Pt/C catalyst retains~66% mass activity and still has advantages over the fresh Pt/C catalyst. We envision that the nest-type catalyst provides a new idea for progress of practical Pt/C ORR catalyst.
基金the Basic and Applied Basic Research Project of Guangdong Province(2019A1515110827)the Science and Technology Planning Project of Guangzhou(202102080169)+3 种基金the Education Commission of Guangdong Province(2019GKTSCX015)the Advanced Functional Materials Scientific Research and Technical Service Team(X20190197)Guangdong Training Programs of Scientific and Technological Innovation for Undergraduates(pdjh2021a0715)the Innovation Training Program for Undergraduate of Hainan Normal University(2021024)。
文摘The development of zinc ion batteries (ZIBs) with large capacity,high rate,and durable cathode material is a crucial and urgent task.Ni Co_(2)O_(4)(NCO) has received ever-growing interest as a potential cathode material for ZIBs,owing to the high theoretical capacity,rich source,cost-effective,and versatile redox nature.However,due to the slow dynamics of the NCO electrodes,its practical application in highperformance systems is severely limited.Herein,we report an electron density modulated NCO nanosheets (N-NCO NSs) with high-kinetics Zn^(2+)-storage capability as an additive-free cathode for flexible all-solid-state (ASS) ZIBs.By virtue of the enhanced electronic conductivity,improved reaction kinetics,and increased active sites,the optimized N-NCO NSs electrode delivers a high capacity of 357.7 m Ah g^(-1)at 1.0 A g^(-1)and a superior rate capacity of 201.4 m Ah g^(-1)at 20 A g^(-1).More importantly,a flexible ASS ZIBs device is manufactured using a solid polymer electrolyte of a poly (vinylidene fluoride hexafluoropropylene)(PVDF-HFP) film.The flexible ASS ZIBs device shows superb durability with 80.2%capacity retention after 20,000 cycles and works well in the range of-20–70℃.Furthermore,the flexible ASS ZIBs achieves an impressive energy density as high as 578.1 W h kg^(-1)with a peak power density of 33.6 k W kg^(-1),substantially outperforming those latest ZIBs.This work could provide valuable insights for constructing high-kinetics and high-capability cathodes with long-term stability for flexible ASS ZIBs.
基金Sponsored by the Ministerial Level Foundation(10660060220)
文摘In order to improve the electromagnetic compatibility of powertrain control module (PCM), a system procedure of vehicular PCM electromagnetic alteration is presented in this paper. First of all, the box of the PCM is divided into different cabins to eliminate interferences between power supply circuit, analog circuit and digital circuit. Secondly, the working principle and electromagnetic (EM) characters of all the signals adopted by a typical PCM are analyzed. Then according to specific electromagnetic characters, different measures are adopted in corresponding signal process circuits or signal transfer cables, such as ground layout designing, power supply protecting, signal shielding and drive cable interference suppressing. Finally, further improvement may also needed regarding to practical electromagnetic compatibility test effects. The final test shows that, with all the measures mentioned above, the conducted emission of a PCM can be reduced by 20 dB; meanwhile, the radiated emission can be reduced by 30 dB comparing to the original system.
文摘The conception of virtual separation technology about high low frequency of electronic module was put forward based on the analysis of tactical performance testing of radio fuse.By means of the principle of fuse Doppler signal acquisition and injection,the high low frequency of electronic module was virtually separated,and one of important parameters—burst height of radio fuse is tested precisely.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11274082 and 51172194)the Excellent Young Scientist Research Award Fund of Shandong Province,China(Grant No.BS2011CL002)
文摘Employing a simple and efficient method of electro-chemical anodization, ZnO nanowire films are fabricated on Zn foil, and an ultraviolet (UV) sensor prototype is formed for investigating the electronic transport through back-to-back double junctions. The UV (365 nm) responses of surface-contacted ZnO film are provided by I-V measurement, along with the current evolution process by on/off of UV illumination. In this paper, the back-to-back metal-seconductor-metal (M-S-M) model is used to explain the electronic transport of a ZnO nanowire film based structure. A thermionic-field electron emission mechanism is employed to fit and explain the as-observed UV sensitive electronic transport properties of ZnO film with surface-modulation by oxygen and water molecular coverage.
基金Supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under Grant No 2016/01/6239
文摘Nonlinear features of electron-acoustic shock waves are studied. The Burgers equation is derived and converted to the time fractional Burgers equation by Agrawal's method. Using the Adomian decomposition method, the shock wave solutions of the time fractional Burgers equation are constructed. The effect of time fractional parameter on the shock wave properties in auroral plasma & investigated.
基金support of this research by the National Natural Science Foundation of China(Nos.U20A20250 and 22179034)the Natural Science Foundation of Heilongjiang Province(No.ZD2023B002).
文摘Electrocatalytic water splitting is an essential and effective means to produce green hydrogen energy structures,so it is necessary to develop non-precious metal catalysts to replace precious metals.Cobalt-based catalysts present effective alternatives due to the diverse valence states,adjustable electronic structures,and plentiful components.In this review,the catalytic mechanisms of hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)for electrocatalytic water splitting are described.Then,the synthesis strategies of various cobalt-based catalysts are systematically summarized,followed by the relationships between the structure and performance clarified.Subsequently,the effects of d-band center and spin regulation for cobalt-based catalysts are also discussed.Furthermore,the dynamic electronic and structural devolution of cobalt-based catalysts are elucidated by combining a series of in-situ characterizations.Finally,we highlight the challenges and future developed directions of cobalt-based catalysts for electrocatalytic water splitting.
基金the financial supports of the National Natural Science Foundation of China(Nos.21771169,51801075,and 11722543)the National Key Research and Development Program of China(No.2017YFA0206703)+1 种基金Anhui Provincial Natural Science Foundation(No.BJ2060190077)Re-cruitment Program of Global Expert,and the Fundamental Research Funds for the Central Universities(Nos.WK2060190074,WK2060190081,and WK2310000066).
文摘Molybdenum disulfide (MoS2) has been recognized as one of the most promising candidates to replace precious Pt for hydrogen evolution reaction (HER) catalysis, due to the natural abundance, low cost, tunable electronic properties, and excellent chemical stability. Although notable processes have been achieved in the past decades, their performance is still far less than that of Pt. Searching effective strategies to boosting their HER performance is still the primary goal. In this review, the recent process of the electronic regulation of MoS2 for HER is summarized, including band structure engineering, electronic state modulation, orbital orientation regulation, interface engineering. Last, the key challenges and opportunities in the development of MoS2-based materials for electrochemical HER are also discussed.
基金financially supported by the National Natural Science Foundation of China(No.51804216)。
文摘Constructing heterointerface engineering has becoming an effective and general strategy for developing highly efficient and durable nonnoble electrocatalysts for catalyzing both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).In this work,we synthesized a self-supporting heterogeneous NiSe@Co_(0.85)Se/NF electrocatalyst using a facile in situ selenization of transition metal precursors that coated on the nickel foam(NF)in polyol solution.The NF was used as both conductive substrate and nickel source,ensuring superior electronic conductivity for catalyzing.The NiSe@-Co_(0.85)Se/NF exhibited remarkable bifunctional electrocatalytic activities with HER overpotential of 168 mV and OER overpotential of 258 mV to achieve 10 mA·cm-2.The water splitting system using NiSe@Co_(0.85)Se/NF as both anode and cathode electrodes achieved a current density of 10 mA·cm^(-2) at 1.61 V with nearly 100% faradaic efficiency and impressively long-term stability.The efficient bifunctional catalytic performance of NiSe@-Co_(0.85)Se/NF should be attributed to the electronic modulation and synergistic effect between NiSe and Co_(0.85)Se,the intrinsic metallic conductivity and the enlarged active sites exposure.This work provides a facile method for developing heterogeneous bifunctional catalysts for advanced electrochemical energy conversion technologies.