The formation and qualification of redox sites in transition metal oxides are always the active fields related to electronics, catalysis, sensors, and energy-storage units. In the present study, the temperature depend...The formation and qualification of redox sites in transition metal oxides are always the active fields related to electronics, catalysis, sensors, and energy-storage units. In the present study, the temperature dependence of thermal reduction of MoO3 was surveyed at the range of 350℃ to 750℃. Upon reduction, the formed redox species characterized by EPR spectroscopy are the MoVion and superoxide anion radical (O2-) when the reduction was induced at the optimal temperature of 300-350℃. When heating-up from 350℃, the EPR signals started to decline in amplitude. The signals in the range of 400-450℃ decreased to half of that at 350℃, and then to zero at ~600℃. Further treatment at even higher temperature or prolonged heating time at 500℃ caused more reduction and more free electrons were released to the MoO3 bulk, which results in a delocalized means similar to the antiferromagnetic coupling. These data herein are helpful to prepare and study the metal-oxide catalysts.展开更多
On account of excellent thermal physical properties, molten nitrates/nitrites salt has been widely employed in heat transfer and thermal storage industry, especially in concentrated solar power system. The thermal sta...On account of excellent thermal physical properties, molten nitrates/nitrites salt has been widely employed in heat transfer and thermal storage industry, especially in concentrated solar power system. The thermal stability study of molten nitrate/nitrite salt is of great importance for this system, and the decomposition mechanism is the most complicated part of it. The oxide species O2^2- and O2^- were considered as intermediates in molten KNO3-NaNO3 while hard to been detected in high temperature molten salt due to their trace concentration and low stability. In this work, the homemade in situ high temperature UV- Vis instrument and a commercial electron paramagnetic resonance were utilized to supply evidence for the formation of superoxide during a slow decomposition process of heat transfer salt (HTS, 53 wt% KNO3/40 wt% NaNO2/7 wt% NaNO3). It is found that the superoxide is more easily generated from molten NaNO2 compared to NaNO3, and it has an absorption band at 420-440 nm in HTS which red shifts as temperature increases. The band is assigned to charge-transfer transition in NaO2 or KO2, responsible for the yellow color of the molten nitrate/nitrite salt. Furthermore, the UV absorption bands of molten NaNO2 and NANO3 are also obtained and compared with that of HTS.展开更多
Desiccation tolerance is a crucial characteristic for desert moss surviving in arid regions. Desiccation procedure always induces amphiphiles transferring from the polar cytoplasm into lipid bodies. The behavior of am...Desiccation tolerance is a crucial characteristic for desert moss surviving in arid regions. Desiccation procedure always induces amphiphiles transferring from the polar cytoplasm into lipid bodies. The behavior of amphiphiles transferring can contribute to the enhancement of desiccation tolerance and the reduction of plasma membrane integrity simultaneously. The effects of amphiphiles partitioning into the lipid phase during water loss has been studied for pollen and seeds using electron paramagnetic resonance (EPR) spectroscopy. However, desiccation-tolerant high plants occur among mosses, several angiosperms and higher plants seeds or pollens. They have different strategies for survival in dehydration and rehydration. A desiccation-tolerant moss Tortula desertorurn was used to investigate the behaviors of amphiphilic molecules during drying by spin label technology. There are small amount of amphiphilic probes partitioning into membrane during moss leaves dehydration, comparing with that in higher plants. Cytoplasm viscosity changed from 1.14 into glass state only dehydration less than 60 min. Moss leaves lost plasma membrane integrity slightly,from 0.115 to 0.237, occurred simultaneously with amphiphiles partition. The results showed the more advantages of mosses than higher plants in adapting fast dehydration. We propose that EPR spin label is feasible for studying the amphiphiles partitioning mechanisms in membrane protection and damage for desiccation-tolerant mosses.展开更多
The electron paramagnetic resonance spectra of the chelate-based ionic liquid[C_(10)mim][Cu(F_6-acac)_3]in different solvents have been obtained at 120 K.It was found that the values of the^(63)Cu hyperfine coupling c...The electron paramagnetic resonance spectra of the chelate-based ionic liquid[C_(10)mim][Cu(F_6-acac)_3]in different solvents have been obtained at 120 K.It was found that the values of the^(63)Cu hyperfine coupling constants(A_(IL))of[C_(10)mim][Cu(F_6-acac)_3]in molecular solvents were from 116 to 180 Gauss.Moreover,the A_(IL)values in general ionic liquids are more complicated,and two sets of peaks can often be observed in their electron paramagnetic resonance spectra.Based on the Kamlet-Taft parameters,relative permittivity,the experimental results were discussed in terms of solvation effect and coordination of the solvents.展开更多
Deep-level defects in silicon carbide(SiC)are critical to the control of the performance of SiC electron devices.In this paper,deep-level defects in aluminumion-implanted 4H-SiC after high-temperature annealingwere st...Deep-level defects in silicon carbide(SiC)are critical to the control of the performance of SiC electron devices.In this paper,deep-level defects in aluminumion-implanted 4H-SiC after high-temperature annealingwere studied using electron paramagnetic resonance(EPR)spectroscopy at temperatures of 77 K and 123 K under different illumination conditions.Results showed that the main defect in aluminum ion-implanted 4H-SiC was the positively charged carbon vacancy(VC+),and the higher the doping concentration was,the higher was the concentration of VC+.Itwas found that the type of material defectwas independent of the doping concentration,although more VC+defects were detected during photoexcitation and at lower temperatures.These results should be helpful in the fundamental research of p-type 4H-SiC fabrication in accordance with functional device development.展开更多
The electron paramagnetic resonance (EPR) parameters (zero-Geld splitting Dand g factors g_‖, g_⊥) of Cr~(4+) ions in Ca_2 GeO_4 crystals have been calculated from thecomplete high-order perturbation formulas of EPR...The electron paramagnetic resonance (EPR) parameters (zero-Geld splitting Dand g factors g_‖, g_⊥) of Cr~(4+) ions in Ca_2 GeO_4 crystals have been calculated from thecomplete high-order perturbation formulas of EPR parameters for a 3d~2 ion in trigonal MX_4clusters. In these formulas, in addition to the contributions to EPR parameters from the widely usedcrystal-field (CF) mechanism, the contributions from the charge-transfer (CT) mechanism (which areoften neglected) are included. From the calculations, it is found that for the high valence state3d~n ions in crystals, the reasonable explanation of EPR parameters (in particular, the g factors)should take both the CF and CT mechanisms into account.展开更多
We report a new design of microwave source for X-band electron paramagnetic resonance spectrometer.The microwave source is equipped with a digital automatic frequency control circuit.The parameters of the digital auto...We report a new design of microwave source for X-band electron paramagnetic resonance spectrometer.The microwave source is equipped with a digital automatic frequency control circuit.The parameters of the digital automatic frequency control circuit can be flexibly configured for different experimental conditions,such as the input powers or the quality factors of the resonator.The configurability makes the microwave source universally compatible and greatly extends its application.To demonstrate the ability of adapting to various experimental conditions,the microwave source is tested by varying the input powers and the quality factors of the resonator.A satisfactory phase noise as low as-135 d Bc/Hz at 100-k Hz offset from the center frequency is achieved,due to the use of a phase-locked dielectric resonator oscillator and a direct digital synthesizer.Continuous-wave electron paramagnetic resonance experiments are conducted to examine the performance of the microwave source.The outstanding performance shows a prospect of wide applications of the microwave source in numerous fields of science.展开更多
Electron paramagnetic resonance (EPR) and optical absorption studies were carried out at room temperature on copper doped mixed alkali cadmium phosphate (LiNaCdP) glasses to understand the nature and symmetry of d...Electron paramagnetic resonance (EPR) and optical absorption studies were carried out at room temperature on copper doped mixed alkali cadmium phosphate (LiNaCdP) glasses to understand the nature and symmetry of dopant. Three samples with varying concentrations of alkali ions have been prepared. The spin Harniltonian parameters obtained from room temperature EPR spectra are: gli=2.437, 9⊥=2.096, A‖=117×10-4 cm-1, A⊥=26×10-4 cm-1 for LiNaCdP1, g‖=2.441, g⊥=2.088, A‖=121×10-4 cm-1, A⊥=25×10-4 cm-1 for LiNaCdP2and g‖=2.433,g⊥=2.096, A‖=125×10 4cm-1, A⊥=32×10-4cm-1 for LiNaCdP3. TheseEPR results indicate that the dopant Cu2+ ion enters the glass matrix into a tetragonally elongated octahedral site. The bonding parameters evaluated by correlating optical and EPR data suggest that bonding between the central metal ion and ligands is partially covalent. The mixed alkali effect in cadmium phosphate glasses was reported.展开更多
A simple theoretical method is introduced for studying the interrelation between electronic and molecular structures.By diagonalizing the 120 × 120 complete energy matrices,the relationships between zero-field sp...A simple theoretical method is introduced for studying the interrelation between electronic and molecular structures.By diagonalizing the 120 × 120 complete energy matrices,the relationships between zero-field splitting (ZFS) parameter D and local distortion parameter △θ for Cr^3+ ions doped,separately,in α- and β- alums are investigated.Our results indicate that there exists an approximately linear relationship between D and △θ in a temperature range 4.2-297 K and the signs of D and △θ are opposite to each other.Moreover,in order to understand the contribution of spin-orbit coupling coefficient ζ to ZFS parameter D,the relation between D and ζ is also discussed.展开更多
This brief review highlights the techniques and diverse applications of time-resolved electron paramagnetic resonance(TREPR)spectroscopy,underscoring its essential role in elucidating the structures,spin dynamics,and ...This brief review highlights the techniques and diverse applications of time-resolved electron paramagnetic resonance(TREPR)spectroscopy,underscoring its essential role in elucidating the structures,spin dynamics,and reactivities of open-shell systems.Furthermore,we discuss the limitations of traditional TREPR methodologies,particularly their challenges in directly observing reactive radical intermediates under real-world reaction conditions.Lastly,we present the latest advancements in TREPR technology developed in our laboratory,specifically ultrawide single-sideband phase-sensitive detection(U-PSD)TREPR,highlighting its significant impact and tremendous potential in advancing free radical chemistry research.We envision promising future applications of TREPR and its pivotal role in enhancing our understanding of mechanisms involved in complex radical processes and photocatalysis.展开更多
Research on solvent effects is an important and long-standing topic,but there still is some room,especially for the special solvent effect of fluoroalcohols.In this work,we investigated the stability of phenoxyl radic...Research on solvent effects is an important and long-standing topic,but there still is some room,especially for the special solvent effect of fluoroalcohols.In this work,we investigated the stability of phenoxyl radical in monohydric alcohol solvents through in-situ electron paramagnetic resonance detections.The decay behavior of phenoxyl radical showed a reasonable relationship with the mesoscopic structure of alcohols,characterized by smalland wide-angle X-ray scattering.Moreover,the distinct solvent effects of fluoroalcohols were emphasized,and the significant influence of van der Waals distance in the solvents was suggested.Overall,the stability of phenoxyl radical in alcohols was quantified and correlated with the solvent structures.We believe that the established method for stability study on radicals will encourage solvent effect studies on various organic reactions,and the proposed solvent effects in fluoroalcohols may inspire the development of green solvents in both industrial conversions and organic synthesis.展开更多
Bacterial small laccases(SLAC) are promising industrial biocatalysts due to their ability to oxidize a broad range of substrates with exceptional thermostability and tolerance for alkaline p H. Electron transfer betwe...Bacterial small laccases(SLAC) are promising industrial biocatalysts due to their ability to oxidize a broad range of substrates with exceptional thermostability and tolerance for alkaline p H. Electron transfer between substrate, copper centers, and O2is one of the key steps in the catalytic turnover of SLAC. However, limited research has been conducted on the electron transfer pathway of SLAC and SLAC-catalyzed reactions, hindering further engineering of SLAC to produce tunable biocatalysts for novel applications. Herein, the combinational use of electron paramagnetic resonance(EPR) and ultraviolet-visible(UV-vis) spectroscopic methods coupled with redox titration were employed to monitor the electron transfer processes and obtain further insights into the electron transfer pathway in SLAC. The reduction potentials for type 1 copper(T1Cu), type 2 copper(T2Cu) and type 3copper(T3Cu) were determined to be 367 ± 2 mV, 378 ± 5 m V and 403 ± 2 mV,respectively. Moreover, the reduction potential of a selected substrate of SLAC, hydroquinone(HQ), was determined to be 288 mV using cyclic voltammetry(CV). In this way, an electron transfer pathway was identified based on the reduction potentials. Specifically,electrons are transferred from HQ to T1Cu, then to T2Cu and T3Cu, and finally to O2.Furthermore, superhyperfine splitting observed via EPR during redox titration indicated a modification in the covalency of T2Cu upon electron uptake, suggesting a conformational alteration in the protein environment surrounding the copper sites, which could potentially influence the reduction potential of the copper sites during catalytic processes. The results presented here not only provide a comprehensive method for analyzing the electron transfer pathway in metalloenzymes through reduction potential measurements, but also offer valuable insights for further engineering and directed evolution studies of SLAC in the aim for biotechnological and industrial applications.展开更多
Contrasting with Fe-based Prussian blue analogues(PBAs),Mn-based PBAs with higher energy density are more promising cathode materials for Na-ion batteries.However,fast capacity fading has severely impeded its practica...Contrasting with Fe-based Prussian blue analogues(PBAs),Mn-based PBAs with higher energy density are more promising cathode materials for Na-ion batteries.However,fast capacity fading has severely impeded its practical use,which is still not well understood.To elucidate the fading mechanism,in situ and ex situ electron paramagnetic resonance are employed here.The results first demonstrate the charge delocalization of Mn2+and Mn dissolution during cycles,which are further proved to be highly related.Our work reveals the inherent shortcoming of Mn-based PBA cathodes in liquid electrolyte.展开更多
The effects of Fe2O3 content on the microstructure and mechanical properties of the CaO-Al2O3-SiO2 system were investigated by differential thermal analysis(DTA), X-ray diffraction(XRD), scanning electron microsc...The effects of Fe2O3 content on the microstructure and mechanical properties of the CaO-Al2O3-SiO2 system were investigated by differential thermal analysis(DTA), X-ray diffraction(XRD), scanning electron microscopy(SEM), electron spin resonance(ESR), and Mssbauer spectroscopy. The results show that the addition of Fe2O3 does not affect the main crystalline phase in the prepared glasses, but it reduces the crystallisation peak temperature, increases the crystallisation activation energy, and reduces the crystal granularity. The ESR results indicate that Fe2O3 can promote crystallization, as it leads to the phase separation of the CaO-Al2O3-SiO2 system due to axial distortion. Moreover, Fe2O3 alters the network structure of the CaO-Al2O3-SiO2 system, allowing Fe3+ to enter octahedral sites that exhibit higher symmetry than tetrahedral sites. All of these factors are favourable to increasing the bending strength. The Mssbauer results reveal that there are two types of coordination for both Fe3+ and Fe2+ and the bending strength of the CaO-Al2O3-SiO2 system increases with the amount of six-coordinate Fe3+. The increasing interaction between Fe3+ and Fe2+ can also enhance the bending strength of the CaO-Al2O3-SiO2 system. The microhardness of the CaO-Al2O3-SiO2 system was determined to be HV 896.9 and the bending strength to be 217 MPa under the heat treatment conditions of nucleation temperature of 700 °C and nucleation time of 2 h, crystallization temperature of 910 °C and crystallization time of 3 h.展开更多
The effects of the lanthanides in various concentration on the peroxidation of 'ghost' of human erythrocyte with free radicals were studied by methods of fluorometry, spectrophotometry and electron paramagneti...The effects of the lanthanides in various concentration on the peroxidation of 'ghost' of human erythrocyte with free radicals were studied by methods of fluorometry, spectrophotometry and electron paramagnetic resonance. It is shown that La 3+ and Ce 3+ in the range of 2×10 -4 ~2×10 -7 mol·L -1 inhibit the t BHP mediated peroxidation significantly. Tb 3+ and Y 3+ inhibit the t BHP mediated peroxidation in low concentration (<2×10 -5 mol·L -1 ), but promotes the peroxidation when the concentration is higher than 2×10 -5 mol·L -1 .展开更多
Background Much research has been focused on ischemia/reperfusion injury (IRI) to the transplanted organs. As a free radical, nitric oxide (NO) plays an important role in IRI. In this study, the production of NO and ...Background Much research has been focused on ischemia/reperfusion injury (IRI) to the transplanted organs. As a free radical, nitric oxide (NO) plays an important role in IRI. In this study, the production of NO and its functions during IRI were monitored in rat models after allotransplantation of kidney grafts.Methods Of 75 male LEW rats, 30 served as donors, and the remaining 45 rats were divided into three groups (15 rats in each group): controls (group 1), kidney allotransplantation followed by bilateral nephrectomy during reperfusion (group 2), 2 hours before operation, donors and recipients were treated with NG-nitro L-arginine methyl ester (L-NAME), a NO synthase inhibitor, at a dose of 30 mg/kg (group 3). Bilateral nephrectomies were performed while kidney grafts were reperfused. The kidney grafts were hypothemically stored for 24 hours. The production of NO before and after reperfusion was measured by electron paramagnetic resonance (EPR). The creatinine level, the glomerular filtration rate (GFR) and the protein carbonyl content in tissue samples were recorded on the first and the fifth day after operation. The data were evaluated by one-way analysis of variance. Differences were considered to be statistically significant when a P value was less than 0.05.Results After reperfusion for 15 minutes, the production of NO increased remarkably and kept increasing till 120 minutes, after which the level returned to normal. In group 3, which was pretreated with L-NAME, creatinine levels were higher than those in group 2 at the 24th hour (4.10±0.50 mg/dl vs. 3.77±0.42 mg/dl, P<0.05) and the 120th hour (3.19±0.79 mg/dl vs. 2.22±0.53 mg/dl, P<0.05). GFR levels in group 3 were lower than those in group 2 at the 24th hour (0.50±0.12 ml/min vs. 0.71±0.19 ml/min, P<0.05) and the 120th hour (0.59±0.38 ml/min vs. 1.27±0.23 ml/min, P<0.01). The content of protein carbonyl in tissue samples of group 3 was lower than that in group 2 at the 24th hour (29.01±7.02 nmol/mg protein vs. 49.39±13.13 nmol/mg protein, P<0.05), but was higher than that at the 120th hour (75.71±16.74 nmol/mg protein vs. 57.93±15.32 nmol/mg protein, P<0.05).Conclusions After transplantation of hypothemically stored kidney grafts, the increased NO production in the early stage has protective effects on the transplanted kidney. Application of L-NAME to inhibit NO production is harmful to the recovery of the renal functions of kidney grafts.展开更多
The compounds of iron substituted yttrium oxide systems have been prepared for the importance in the field of magneto electric materials.The polycrystalline samples of Y2–xFexO3–y(x=0.1,0.2) were prepared by solid-s...The compounds of iron substituted yttrium oxide systems have been prepared for the importance in the field of magneto electric materials.The polycrystalline samples of Y2–xFexO3–y(x=0.1,0.2) were prepared by solid-state reaction method.The single-phase formation of these compounds was confirmed by X-ray diffraction studies.It was found that the samples crystallized in tetragonal phase and the lattice parameters were calculated as a=1.0559(7) nm,c=1.0832(9) nm for Y1.9Fe0.1O3–y and a=1.0545(6) nm,c=1.0841(8)...展开更多
This paper seeks to identify macroscopic metallogenic mechanisms of various mineral deposits by studying microscopic typomorphic characteristics of typical minerals associated with the deposits and to reveal the mecha...This paper seeks to identify macroscopic metallogenic mechanisms of various mineral deposits by studying microscopic typomorphic characteristics of typical minerals associated with the deposits and to reveal the mechanism of lattice gold in detail by studying both physical and chemical characteristics of quartz from representative gold deposits in the North China Platform.As part of their extensive research,the authors examine the relationship between trace elements with wall rock,the ore-forming media,and gold immigration of various types of gold deposits,including their salinity,type,temperature.These are key factors to revealing the mineralization mechanism,and indicators for mineral prospecting,exploration,mining,and metallurgical technology.In order to address the questions posed,the following methods were used:field investigations of geology and sampling of the representative gold deposits,physical study and chemical analysis of quartz including,but not limited to,fluid inclusions as well as their compositions and trace elements in quartz,the unit cell parameters,electron paramagnetic resonance spectrum(EPR),and infrared spectroscopic analysis(ISA).As a result of this study,the authors observe the following key findings:unit cell parameters of quartz vary with their contents of foreign elements including gold,paragenetic stage,wall rock type,and other factors;the higher the forming temperature and the lower the gold content in quartz,the smaller the unit cell parameters,and vice versa.Additionally,the EPR absorption lines resulted from the O–Al defect center.The density of these types of hole centers increases and the EPR signal strengthens when the temperature decreases.Based on the findings,the authors conclude that lattice gold exists in quartz.Gold,in the form of Au^(+)and/or Au^(3+),entering quartz and producing an electron–hole center,namely,the O-Au hole center,makes the center produce spin resonance absorption and results in the EPR absorption peak#I.Both unit cell parameters and EPR of quartz can potentially be used in mineral prospecting,relative ore-forming temperature determination,and grade control during mining.展开更多
Electrochemical energy storage devices are pivotal in achieving“carbon neutrality”by enabling the storage of energy generated from renewable sources.To facilitate the development of these devices,it is important to ...Electrochemical energy storage devices are pivotal in achieving“carbon neutrality”by enabling the storage of energy generated from renewable sources.To facilitate the development of these devices,it is important to gain insight into the underlying the single-/multi-electron transfer process.This can be achieved through in-time detection under operational conditions,but there are limited tools available for monitoring electron transfer under operando conditions.Electron paramagnetic resonance(EPR)is a powerful technique that can meet these expectations,as it is highly sensitive to unpaired electrons and can detect changes of paramagnetic centres.Despite the long history of in situ electrochemical EPR research,its potential has been surprisingly underutilized due to the need for strict operando cell design under special testing conditions.This review comprehensively summarizes recent efforts to understand energy storage mechanisms using in situ/operando EPR,with the aim of drawing researchers’attention to this powerful technique.After introducing the fundamental principles of EPR,we describe the critical advances made in detecting batteries using operando EPR,along with the remaining challenges and opportunities for future development of this technology in batteries.We emphasize the need for strict operando cell design and the importance of designing experiments that closely mimic real-world conditions.We believe that this review will provide innovative solutions to solve tough problems that researchers may encounter during their battery research,and ultimately contribute to the development of more efficient and sustainable energy storage devices.展开更多
Understanding the processes of charge generation, transfer and capture is important for the design and synthesis of efficient photocatalysts. In this work, light-induced charge separation and effect of O_(2) on electr...Understanding the processes of charge generation, transfer and capture is important for the design and synthesis of efficient photocatalysts. In this work, light-induced charge separation and effect of O_(2) on electron transfer processes in SrTiO_(3) were investigated by electron paramagnetic resonance(EPR). It was found that photoinduced electron transfer from O_(2)- to Ti^(4+) produced Ti^(3+) and O- redox radical pairs under vacuum condition. Under oxygen atmosphere, however, surface bound superoxide radicals O_(2)-were formed by electron reduction of adsorbed oxygen at initial photoirradiation stage, and quenched by the reverse electron transfer to Ti^(4+) upon further photoirradiation. Formation of long-lived charge separation associated [Ti^(3+)---O-] species and the reversibility of surface bound superoxide radicals mediating the processes of photogenerated electrons may be accountable for the high activity of SrTiO_(3) in photocatalytic water splitting reaction.展开更多
基金supported by the National Key R&D Program of China(No.2018YFA0306600)AnHui Initiative in Quantum Information Technologies(No.AHY050000)
文摘The formation and qualification of redox sites in transition metal oxides are always the active fields related to electronics, catalysis, sensors, and energy-storage units. In the present study, the temperature dependence of thermal reduction of MoO3 was surveyed at the range of 350℃ to 750℃. Upon reduction, the formed redox species characterized by EPR spectroscopy are the MoVion and superoxide anion radical (O2-) when the reduction was induced at the optimal temperature of 300-350℃. When heating-up from 350℃, the EPR signals started to decline in amplitude. The signals in the range of 400-450℃ decreased to half of that at 350℃, and then to zero at ~600℃. Further treatment at even higher temperature or prolonged heating time at 500℃ caused more reduction and more free electrons were released to the MoO3 bulk, which results in a delocalized means similar to the antiferromagnetic coupling. These data herein are helpful to prepare and study the metal-oxide catalysts.
基金This work was supported by the "Strategic Priority Research Program, TMSR" of the Chinese Academy of Sciences (No.XD02002400), the National Natural Science Foundation of China (No.51506214), the Hundred Talents Program, CAS and Shanghai Pujiang Program.
文摘On account of excellent thermal physical properties, molten nitrates/nitrites salt has been widely employed in heat transfer and thermal storage industry, especially in concentrated solar power system. The thermal stability study of molten nitrate/nitrite salt is of great importance for this system, and the decomposition mechanism is the most complicated part of it. The oxide species O2^2- and O2^- were considered as intermediates in molten KNO3-NaNO3 while hard to been detected in high temperature molten salt due to their trace concentration and low stability. In this work, the homemade in situ high temperature UV- Vis instrument and a commercial electron paramagnetic resonance were utilized to supply evidence for the formation of superoxide during a slow decomposition process of heat transfer salt (HTS, 53 wt% KNO3/40 wt% NaNO2/7 wt% NaNO3). It is found that the superoxide is more easily generated from molten NaNO2 compared to NaNO3, and it has an absorption band at 420-440 nm in HTS which red shifts as temperature increases. The band is assigned to charge-transfer transition in NaO2 or KO2, responsible for the yellow color of the molten nitrate/nitrite salt. Furthermore, the UV absorption bands of molten NaNO2 and NANO3 are also obtained and compared with that of HTS.
基金the National Natural Science Foundation of China (No.30371002).
文摘Desiccation tolerance is a crucial characteristic for desert moss surviving in arid regions. Desiccation procedure always induces amphiphiles transferring from the polar cytoplasm into lipid bodies. The behavior of amphiphiles transferring can contribute to the enhancement of desiccation tolerance and the reduction of plasma membrane integrity simultaneously. The effects of amphiphiles partitioning into the lipid phase during water loss has been studied for pollen and seeds using electron paramagnetic resonance (EPR) spectroscopy. However, desiccation-tolerant high plants occur among mosses, several angiosperms and higher plants seeds or pollens. They have different strategies for survival in dehydration and rehydration. A desiccation-tolerant moss Tortula desertorurn was used to investigate the behaviors of amphiphilic molecules during drying by spin label technology. There are small amount of amphiphilic probes partitioning into membrane during moss leaves dehydration, comparing with that in higher plants. Cytoplasm viscosity changed from 1.14 into glass state only dehydration less than 60 min. Moss leaves lost plasma membrane integrity slightly,from 0.115 to 0.237, occurred simultaneously with amphiphiles partition. The results showed the more advantages of mosses than higher plants in adapting fast dehydration. We propose that EPR spin label is feasible for studying the amphiphiles partitioning mechanisms in membrane protection and damage for desiccation-tolerant mosses.
基金supported by the National Natural Science Foundation,China(No.21573196)the Fundamental Research Funds for the Central Universities,Chinathe National High Technology Research and the National Natural Science Foundation,China(No.22073081)。
文摘The electron paramagnetic resonance spectra of the chelate-based ionic liquid[C_(10)mim][Cu(F_6-acac)_3]in different solvents have been obtained at 120 K.It was found that the values of the^(63)Cu hyperfine coupling constants(A_(IL))of[C_(10)mim][Cu(F_6-acac)_3]in molecular solvents were from 116 to 180 Gauss.Moreover,the A_(IL)values in general ionic liquids are more complicated,and two sets of peaks can often be observed in their electron paramagnetic resonance spectra.Based on the Kamlet-Taft parameters,relative permittivity,the experimental results were discussed in terms of solvation effect and coordination of the solvents.
基金supported by the National Natural Science Foundation of China (No. 51575389, 51761135106)the National Key Research and Development Program of China (2016YFB1102203)+2 种基金the State Key Laboratory of Precision Measurement Technology and Instruments (Pilt1705)the ‘111’ Project by the State Administration of Foreign Experts Affairsthe Ministry of Education of China (Grant No. B07014)
文摘Deep-level defects in silicon carbide(SiC)are critical to the control of the performance of SiC electron devices.In this paper,deep-level defects in aluminumion-implanted 4H-SiC after high-temperature annealingwere studied using electron paramagnetic resonance(EPR)spectroscopy at temperatures of 77 K and 123 K under different illumination conditions.Results showed that the main defect in aluminum ion-implanted 4H-SiC was the positively charged carbon vacancy(VC+),and the higher the doping concentration was,the higher was the concentration of VC+.Itwas found that the type of material defectwas independent of the doping concentration,although more VC+defects were detected during photoexcitation and at lower temperatures.These results should be helpful in the fundamental research of p-type 4H-SiC fabrication in accordance with functional device development.
文摘The electron paramagnetic resonance (EPR) parameters (zero-Geld splitting Dand g factors g_‖, g_⊥) of Cr~(4+) ions in Ca_2 GeO_4 crystals have been calculated from thecomplete high-order perturbation formulas of EPR parameters for a 3d~2 ion in trigonal MX_4clusters. In these formulas, in addition to the contributions to EPR parameters from the widely usedcrystal-field (CF) mechanism, the contributions from the charge-transfer (CT) mechanism (which areoften neglected) are included. From the calculations, it is found that for the high valence state3d~n ions in crystals, the reasonable explanation of EPR parameters (in particular, the g factors)should take both the CF and CT mechanisms into account.
基金Project supported by the Chinese Academy of Sciences(Grant Nos.XDC07000000 and GJJSTD20200001)Hefei Comprehensive National Science CenterYouth Innovation Promotion Association of Chinese Academy of Sciences for the support。
文摘We report a new design of microwave source for X-band electron paramagnetic resonance spectrometer.The microwave source is equipped with a digital automatic frequency control circuit.The parameters of the digital automatic frequency control circuit can be flexibly configured for different experimental conditions,such as the input powers or the quality factors of the resonator.The configurability makes the microwave source universally compatible and greatly extends its application.To demonstrate the ability of adapting to various experimental conditions,the microwave source is tested by varying the input powers and the quality factors of the resonator.A satisfactory phase noise as low as-135 d Bc/Hz at 100-k Hz offset from the center frequency is achieved,due to the use of a phase-locked dielectric resonator oscillator and a direct digital synthesizer.Continuous-wave electron paramagnetic resonance experiments are conducted to examine the performance of the microwave source.The outstanding performance shows a prospect of wide applications of the microwave source in numerous fields of science.
文摘Electron paramagnetic resonance (EPR) and optical absorption studies were carried out at room temperature on copper doped mixed alkali cadmium phosphate (LiNaCdP) glasses to understand the nature and symmetry of dopant. Three samples with varying concentrations of alkali ions have been prepared. The spin Harniltonian parameters obtained from room temperature EPR spectra are: gli=2.437, 9⊥=2.096, A‖=117×10-4 cm-1, A⊥=26×10-4 cm-1 for LiNaCdP1, g‖=2.441, g⊥=2.088, A‖=121×10-4 cm-1, A⊥=25×10-4 cm-1 for LiNaCdP2and g‖=2.433,g⊥=2.096, A‖=125×10 4cm-1, A⊥=32×10-4cm-1 for LiNaCdP3. TheseEPR results indicate that the dopant Cu2+ ion enters the glass matrix into a tetragonally elongated octahedral site. The bonding parameters evaluated by correlating optical and EPR data suggest that bonding between the central metal ion and ligands is partially covalent. The mixed alkali effect in cadmium phosphate glasses was reported.
基金Project supported by the National Natural Science Foundation of China (Grant No 10774103)the Doctoral Education Fund of Education Ministry of China (Grant No 20050610011)
文摘A simple theoretical method is introduced for studying the interrelation between electronic and molecular structures.By diagonalizing the 120 × 120 complete energy matrices,the relationships between zero-field splitting (ZFS) parameter D and local distortion parameter △θ for Cr^3+ ions doped,separately,in α- and β- alums are investigated.Our results indicate that there exists an approximately linear relationship between D and △θ in a temperature range 4.2-297 K and the signs of D and △θ are opposite to each other.Moreover,in order to understand the contribution of spin-orbit coupling coefficient ζ to ZFS parameter D,the relation between D and ζ is also discussed.
基金supported by the Tsinghua University Dushi Program,China(No.52308013422).
文摘This brief review highlights the techniques and diverse applications of time-resolved electron paramagnetic resonance(TREPR)spectroscopy,underscoring its essential role in elucidating the structures,spin dynamics,and reactivities of open-shell systems.Furthermore,we discuss the limitations of traditional TREPR methodologies,particularly their challenges in directly observing reactive radical intermediates under real-world reaction conditions.Lastly,we present the latest advancements in TREPR technology developed in our laboratory,specifically ultrawide single-sideband phase-sensitive detection(U-PSD)TREPR,highlighting its significant impact and tremendous potential in advancing free radical chemistry research.We envision promising future applications of TREPR and its pivotal role in enhancing our understanding of mechanisms involved in complex radical processes and photocatalysis.
基金supported by the National Natural Science Foundation of China(grant numbers 22103068 and 22303079)Zhejiang Provincial Natural Science Foundation of China(grant number LGC22B050010)the National Key R&D Program of China(grant number 2022YFA1503200)
文摘Research on solvent effects is an important and long-standing topic,but there still is some room,especially for the special solvent effect of fluoroalcohols.In this work,we investigated the stability of phenoxyl radical in monohydric alcohol solvents through in-situ electron paramagnetic resonance detections.The decay behavior of phenoxyl radical showed a reasonable relationship with the mesoscopic structure of alcohols,characterized by smalland wide-angle X-ray scattering.Moreover,the distinct solvent effects of fluoroalcohols were emphasized,and the significant influence of van der Waals distance in the solvents was suggested.Overall,the stability of phenoxyl radical in alcohols was quantified and correlated with the solvent structures.We believe that the established method for stability study on radicals will encourage solvent effect studies on various organic reactions,and the proposed solvent effects in fluoroalcohols may inspire the development of green solvents in both industrial conversions and organic synthesis.
基金supported by the National Natural Science Foundation of China (21825703, 21927814)the National Key R&D Program of China (2019YFA0405600, 2019YFA0706900, 2021YFA1200104, 2022YFC3400500)+3 种基金the Strategic Priority Research Program of Chinese Academy of Sciences (XDB0540200, XDB37040201)Plans for Major Provincial Science&Technology Projects (202303a07020004)Basic Research Program Based on Major Scientific Infrastructures,CAS (JZHKYPT-2021-05)the Youth Innovation Promotion Association,CAS (2022455)
文摘Bacterial small laccases(SLAC) are promising industrial biocatalysts due to their ability to oxidize a broad range of substrates with exceptional thermostability and tolerance for alkaline p H. Electron transfer between substrate, copper centers, and O2is one of the key steps in the catalytic turnover of SLAC. However, limited research has been conducted on the electron transfer pathway of SLAC and SLAC-catalyzed reactions, hindering further engineering of SLAC to produce tunable biocatalysts for novel applications. Herein, the combinational use of electron paramagnetic resonance(EPR) and ultraviolet-visible(UV-vis) spectroscopic methods coupled with redox titration were employed to monitor the electron transfer processes and obtain further insights into the electron transfer pathway in SLAC. The reduction potentials for type 1 copper(T1Cu), type 2 copper(T2Cu) and type 3copper(T3Cu) were determined to be 367 ± 2 mV, 378 ± 5 m V and 403 ± 2 mV,respectively. Moreover, the reduction potential of a selected substrate of SLAC, hydroquinone(HQ), was determined to be 288 mV using cyclic voltammetry(CV). In this way, an electron transfer pathway was identified based on the reduction potentials. Specifically,electrons are transferred from HQ to T1Cu, then to T2Cu and T3Cu, and finally to O2.Furthermore, superhyperfine splitting observed via EPR during redox titration indicated a modification in the covalency of T2Cu upon electron uptake, suggesting a conformational alteration in the protein environment surrounding the copper sites, which could potentially influence the reduction potential of the copper sites during catalytic processes. The results presented here not only provide a comprehensive method for analyzing the electron transfer pathway in metalloenzymes through reduction potential measurements, but also offer valuable insights for further engineering and directed evolution studies of SLAC in the aim for biotechnological and industrial applications.
基金supported by grants from the National Natural Science Foundation of China(grant no.22272055)Scientific and Technological Project in Henan Province(grant no.222102240081)+1 种基金Key Scientific Research Projects in Universities of Henan Province(grant no.22A140014)Technological Project of Anyang City(grant no.201710).
文摘Contrasting with Fe-based Prussian blue analogues(PBAs),Mn-based PBAs with higher energy density are more promising cathode materials for Na-ion batteries.However,fast capacity fading has severely impeded its practical use,which is still not well understood.To elucidate the fading mechanism,in situ and ex situ electron paramagnetic resonance are employed here.The results first demonstrate the charge delocalization of Mn2+and Mn dissolution during cycles,which are further proved to be highly related.Our work reveals the inherent shortcoming of Mn-based PBA cathodes in liquid electrolyte.
基金Project(50974090)supported by the National Natural Science Foundation of ChinaProjects(JCYJ20140418182819155,JCYJ20130329113849606)supported by the Shenzhen Dedicated Funding of Strategic Emerging Industry Development Program,China
文摘The effects of Fe2O3 content on the microstructure and mechanical properties of the CaO-Al2O3-SiO2 system were investigated by differential thermal analysis(DTA), X-ray diffraction(XRD), scanning electron microscopy(SEM), electron spin resonance(ESR), and Mssbauer spectroscopy. The results show that the addition of Fe2O3 does not affect the main crystalline phase in the prepared glasses, but it reduces the crystallisation peak temperature, increases the crystallisation activation energy, and reduces the crystal granularity. The ESR results indicate that Fe2O3 can promote crystallization, as it leads to the phase separation of the CaO-Al2O3-SiO2 system due to axial distortion. Moreover, Fe2O3 alters the network structure of the CaO-Al2O3-SiO2 system, allowing Fe3+ to enter octahedral sites that exhibit higher symmetry than tetrahedral sites. All of these factors are favourable to increasing the bending strength. The Mssbauer results reveal that there are two types of coordination for both Fe3+ and Fe2+ and the bending strength of the CaO-Al2O3-SiO2 system increases with the amount of six-coordinate Fe3+. The increasing interaction between Fe3+ and Fe2+ can also enhance the bending strength of the CaO-Al2O3-SiO2 system. The microhardness of the CaO-Al2O3-SiO2 system was determined to be HV 896.9 and the bending strength to be 217 MPa under the heat treatment conditions of nucleation temperature of 700 °C and nucleation time of 2 h, crystallization temperature of 910 °C and crystallization time of 3 h.
文摘The effects of the lanthanides in various concentration on the peroxidation of 'ghost' of human erythrocyte with free radicals were studied by methods of fluorometry, spectrophotometry and electron paramagnetic resonance. It is shown that La 3+ and Ce 3+ in the range of 2×10 -4 ~2×10 -7 mol·L -1 inhibit the t BHP mediated peroxidation significantly. Tb 3+ and Y 3+ inhibit the t BHP mediated peroxidation in low concentration (<2×10 -5 mol·L -1 ), but promotes the peroxidation when the concentration is higher than 2×10 -5 mol·L -1 .
文摘Background Much research has been focused on ischemia/reperfusion injury (IRI) to the transplanted organs. As a free radical, nitric oxide (NO) plays an important role in IRI. In this study, the production of NO and its functions during IRI were monitored in rat models after allotransplantation of kidney grafts.Methods Of 75 male LEW rats, 30 served as donors, and the remaining 45 rats were divided into three groups (15 rats in each group): controls (group 1), kidney allotransplantation followed by bilateral nephrectomy during reperfusion (group 2), 2 hours before operation, donors and recipients were treated with NG-nitro L-arginine methyl ester (L-NAME), a NO synthase inhibitor, at a dose of 30 mg/kg (group 3). Bilateral nephrectomies were performed while kidney grafts were reperfused. The kidney grafts were hypothemically stored for 24 hours. The production of NO before and after reperfusion was measured by electron paramagnetic resonance (EPR). The creatinine level, the glomerular filtration rate (GFR) and the protein carbonyl content in tissue samples were recorded on the first and the fifth day after operation. The data were evaluated by one-way analysis of variance. Differences were considered to be statistically significant when a P value was less than 0.05.Results After reperfusion for 15 minutes, the production of NO increased remarkably and kept increasing till 120 minutes, after which the level returned to normal. In group 3, which was pretreated with L-NAME, creatinine levels were higher than those in group 2 at the 24th hour (4.10±0.50 mg/dl vs. 3.77±0.42 mg/dl, P<0.05) and the 120th hour (3.19±0.79 mg/dl vs. 2.22±0.53 mg/dl, P<0.05). GFR levels in group 3 were lower than those in group 2 at the 24th hour (0.50±0.12 ml/min vs. 0.71±0.19 ml/min, P<0.05) and the 120th hour (0.59±0.38 ml/min vs. 1.27±0.23 ml/min, P<0.01). The content of protein carbonyl in tissue samples of group 3 was lower than that in group 2 at the 24th hour (29.01±7.02 nmol/mg protein vs. 49.39±13.13 nmol/mg protein, P<0.05), but was higher than that at the 120th hour (75.71±16.74 nmol/mg protein vs. 57.93±15.32 nmol/mg protein, P<0.05).Conclusions After transplantation of hypothemically stored kidney grafts, the increased NO production in the early stage has protective effects on the transplanted kidney. Application of L-NAME to inhibit NO production is harmful to the recovery of the renal functions of kidney grafts.
文摘The compounds of iron substituted yttrium oxide systems have been prepared for the importance in the field of magneto electric materials.The polycrystalline samples of Y2–xFexO3–y(x=0.1,0.2) were prepared by solid-state reaction method.The single-phase formation of these compounds was confirmed by X-ray diffraction studies.It was found that the samples crystallized in tetragonal phase and the lattice parameters were calculated as a=1.0559(7) nm,c=1.0832(9) nm for Y1.9Fe0.1O3–y and a=1.0545(6) nm,c=1.0841(8)...
文摘This paper seeks to identify macroscopic metallogenic mechanisms of various mineral deposits by studying microscopic typomorphic characteristics of typical minerals associated with the deposits and to reveal the mechanism of lattice gold in detail by studying both physical and chemical characteristics of quartz from representative gold deposits in the North China Platform.As part of their extensive research,the authors examine the relationship between trace elements with wall rock,the ore-forming media,and gold immigration of various types of gold deposits,including their salinity,type,temperature.These are key factors to revealing the mineralization mechanism,and indicators for mineral prospecting,exploration,mining,and metallurgical technology.In order to address the questions posed,the following methods were used:field investigations of geology and sampling of the representative gold deposits,physical study and chemical analysis of quartz including,but not limited to,fluid inclusions as well as their compositions and trace elements in quartz,the unit cell parameters,electron paramagnetic resonance spectrum(EPR),and infrared spectroscopic analysis(ISA).As a result of this study,the authors observe the following key findings:unit cell parameters of quartz vary with their contents of foreign elements including gold,paragenetic stage,wall rock type,and other factors;the higher the forming temperature and the lower the gold content in quartz,the smaller the unit cell parameters,and vice versa.Additionally,the EPR absorption lines resulted from the O–Al defect center.The density of these types of hole centers increases and the EPR signal strengthens when the temperature decreases.Based on the findings,the authors conclude that lattice gold exists in quartz.Gold,in the form of Au^(+)and/or Au^(3+),entering quartz and producing an electron–hole center,namely,the O-Au hole center,makes the center produce spin resonance absorption and results in the EPR absorption peak#I.Both unit cell parameters and EPR of quartz can potentially be used in mineral prospecting,relative ore-forming temperature determination,and grade control during mining.
基金the National Natural Science Foundation of China(Nos.22179145,21975287,and 22138013)Taishan Scholars Program of Shandong Province(No.tsqn20221117)+3 种基金the startup support grant from China University of Petroleum(East China)(No.27RA2204027)Shandong Provincial Natural Science Foundation(No.ZR2020ZD08)Shandong Province Postdoctoral Innovative Talent Support Program(No.SDBX2022034)Qingdao Postdoctoral Innovation Project(No.QDBSH20220202003).
文摘Electrochemical energy storage devices are pivotal in achieving“carbon neutrality”by enabling the storage of energy generated from renewable sources.To facilitate the development of these devices,it is important to gain insight into the underlying the single-/multi-electron transfer process.This can be achieved through in-time detection under operational conditions,but there are limited tools available for monitoring electron transfer under operando conditions.Electron paramagnetic resonance(EPR)is a powerful technique that can meet these expectations,as it is highly sensitive to unpaired electrons and can detect changes of paramagnetic centres.Despite the long history of in situ electrochemical EPR research,its potential has been surprisingly underutilized due to the need for strict operando cell design under special testing conditions.This review comprehensively summarizes recent efforts to understand energy storage mechanisms using in situ/operando EPR,with the aim of drawing researchers’attention to this powerful technique.After introducing the fundamental principles of EPR,we describe the critical advances made in detecting batteries using operando EPR,along with the remaining challenges and opportunities for future development of this technology in batteries.We emphasize the need for strict operando cell design and the importance of designing experiments that closely mimic real-world conditions.We believe that this review will provide innovative solutions to solve tough problems that researchers may encounter during their battery research,and ultimately contribute to the development of more efficient and sustainable energy storage devices.
基金financially supported by the National Key R&D Program of China under contact No.2017YFA0204804the National Natural Science Foundation of China under contact Nos.21761142018,21473189 and 22088102 for supporting Fundamental Research Center of Artificial Photosynthesis(FRe CAP)。
文摘Understanding the processes of charge generation, transfer and capture is important for the design and synthesis of efficient photocatalysts. In this work, light-induced charge separation and effect of O_(2) on electron transfer processes in SrTiO_(3) were investigated by electron paramagnetic resonance(EPR). It was found that photoinduced electron transfer from O_(2)- to Ti^(4+) produced Ti^(3+) and O- redox radical pairs under vacuum condition. Under oxygen atmosphere, however, surface bound superoxide radicals O_(2)-were formed by electron reduction of adsorbed oxygen at initial photoirradiation stage, and quenched by the reverse electron transfer to Ti^(4+) upon further photoirradiation. Formation of long-lived charge separation associated [Ti^(3+)---O-] species and the reversibility of surface bound superoxide radicals mediating the processes of photogenerated electrons may be accountable for the high activity of SrTiO_(3) in photocatalytic water splitting reaction.