Making use of the relativistic BBGKY technique,the relativistic generalization of Landau collision integral is obtained.Furthermore,we calculate the relativistic hydrodynamic modes up to the second order in the hydrod...Making use of the relativistic BBGKY technique,the relativistic generalization of Landau collision integral is obtained.Furthermore,we calculate the relativistic hydrodynamic modes up to the second order in the hydrodynamic wave number.Combining Résibois' method,we present the first principle formula of the relativistic heat conductivity of Coulomb electronic plasmas for low-order corrections.展开更多
The (DC-GDPAU) is a DC glow discharge plasma experiment that was designed, established, and operated in the Physics Department at Ain Shams University (Egypt). The aim of this experiment is to study and improve some p...The (DC-GDPAU) is a DC glow discharge plasma experiment that was designed, established, and operated in the Physics Department at Ain Shams University (Egypt). The aim of this experiment is to study and improve some properties of a printed circuit board (PCB) by exposing it to the plasma. The device consists of cylindrical discharge chamber with movable parallel circular copper electrodes (cathode and anode) fixed inside it. The distance between them is 12 cm. This plasma experiment works in a low-pressure range (0.15 - 0.70 Torr) for Ar gas with a maximum DC power supply of 200 W. The Paschen curves and electrical plasma parameters (current, volt, power, resistance) characterized to the plasma have been measured and calculated at each cm between the two electrodes. Besides, the electron temperature and ion density are obtained at different radial distances using a double Langmuir probe. The electron temperature (<em>KT<sub>e</sub></em>) was kept stable in range 6.58 to 10.44 eV;whereas the ion density (<em>ni</em>) was in range from 0.91 × 10<sup>10</sup> cm<sup><span style="white-space:nowrap;">−</span>3</sup> to 1.79 × 10<sup>10</sup> cm<sup><span style="white-space:nowrap;">−</span>3</sup>. A digital optical microscope (800×) was employed to draw a comparison between the pre-and after effect of exposure to plasma on the shaping of the circuit layout. The experimental results show that the electrical conductivity increased after plasma exposure, also an improvement in the adhesion force in the Cu foil surface. A significant increase in the conductivity can be directly related to the position of the sample surfaces as well as to the time of exposure. This shows the importance of the obtained results in developing the PCBs manufacturing that uses in different microelectronics devices like those onboard of space vehicles.展开更多
Ball Lightning (BL) is a “plasma bubble” that has very remarkable properties. Its membrane contains a higher density of charged particles than the ambient medium. They are held together by mutually attracting surfac...Ball Lightning (BL) is a “plasma bubble” that has very remarkable properties. Its membrane contains a higher density of charged particles than the ambient medium. They are held together by mutually attracting surface charges, generated by collective oscillations of all unbound electrons inside the membrane. Energy losses by collisions and emission of radiation, as well as losses of charged particles by recombination, are compensated by extracting other ones from atmospheric air. Since that occurs in a special rhythmic way, this leads to “parametric amplification” of the oscillations of all unbound electrons in the plasma membrane. Moreover, BL is attracted by higher concentrations of charged particles in atmospheric air. Too much of them leads to explosion and too few to extinction of visible BL. Since the electric charge of BL is oscillating, it is also attracted by metals, water and glass. It can then heat, melt and vaporize these materials without stored energy. BL is even able to pass through window panes in 3 different ways, but that can also be explained.展开更多
Through diagnosing the plasma density and calculating the intensity of microwave electric field,four 10 cm electron cyclotron resonance(ECR)ion sources with different magnetic field structures are studied to reveal th...Through diagnosing the plasma density and calculating the intensity of microwave electric field,four 10 cm electron cyclotron resonance(ECR)ion sources with different magnetic field structures are studied to reveal the inside interaction between the plasma,magnetic field and microwave electric field.From the diagnosing result it can be found that the plasma density distribution is controlled by the plasma generation and electron loss volumes associated with the magnetic field and microwave power level.Based on the cold plasma hypothesis and diagnosing result,the microwave electric field intensity distribution in the plasma is calculated.The result shows that the plasma will significantly change the distribution of the microwave electric field intensity to form a bow shape.From the boundary region of the shape to the center,the electric field intensity varies from higher to lower and the diagnosed density inversely changes.If the bow and its inside lower electric field intensity region are close to the screen grid,the performance of ion beam extracting will be better.The study can provide useful information for the creating of 10 cm ECR ion source and understanding its mechanism.展开更多
We report spectroscopic studies on plasma electron number density of laser-induced plasma produced by ns-Nd:YAG laser light pulses on an aluminum sample in air at atmospheric pressure. The effect of different laser e...We report spectroscopic studies on plasma electron number density of laser-induced plasma produced by ns-Nd:YAG laser light pulses on an aluminum sample in air at atmospheric pressure. The effect of different laser energy and the effect of different laser wavelengths were compared. The experimentally observed line profiles of neutral aluminum have been used to extract the excitation temperature using the Boltzmann plot method, whereas the electron number density has been determined from the Stark broadened as well as using the Saha-Boltzmann equation (SBE). Each approach was also carried out by using the AI emission line and Mg emission lines. It was observed that the,SBE method generated a little higher electron number density value than the Stark broadening, method, but within the experimental uncertainty range. Comparisons of Ne determined by the two methods show the presence of a linear relation which is independent of laser energy or laser wavelength. These results show the applicability of the SBE method for Are determination, especially when the system does not have any pure emission lines whose electron impact factor is known, Also use of Mg lines gives superior results than Al lines.展开更多
Inductively coupled radio-frequency(RF) plasma neutralizer(RPN) is an insert-free device that can be employed as an electron source in electric propulsion applications.Electron-extraction characteristics of the RP...Inductively coupled radio-frequency(RF) plasma neutralizer(RPN) is an insert-free device that can be employed as an electron source in electric propulsion applications.Electron-extraction characteristics of the RPN are related to the bulk plasma parameters and the device's geometry.Therefore,the effects of different electron-extraction apertures and operational parameters upon the electron-extraction characteristics are investigated according to the global nonambipolar flow and sheath model.Moreover,these models can also be used to explain why the electron-extraction characteristics of the RPN strongly depend upon the formation of the anode spot.During the experimental study,two types of anode spots are observed.Each of them has unique characteristics of electron extraction.Moreover,the hysteresis of an anode spot is observed by changing the xenon volume-flow rates or the bias voltages.In addition,the rapid ignited method,gas-utilization factor,electron-extraction cost and other factors that need to be considered in the design of the RPN are also discussed.展开更多
Plasma electron density is one of the most fundamental parameters in the study of tokamak plasma physics.The method of plasma electron density measuring and processing on the Joint Texas Experimental Tokamak(J-TEXT) w...Plasma electron density is one of the most fundamental parameters in the study of tokamak plasma physics.The method of plasma electron density measuring and processing on the Joint Texas Experimental Tokamak(J-TEXT) was presented in this paper.The principle of the plasma electron density measuring by hydrogen cyanide(HCN) laser interferometer was introduced.Room temperature triglycine sulface(TGS) detector was used to obtain the beat signal of HCN,and phase difference was measured by high-speed acquisition card DAQ2010.Based on the signal characteristics,a specific HCN processing algorithm was designed to eliminate the baseline offset accurately and process overturns of HCN signals effectively.As a result,plasma electron density with high accuracy and low noise has been obtained during the J-TEXT tokamak experiment.展开更多
A Fokker-Planck code is developed based upon Epperlein's scheme to investigate laser-produced plasmas in relevance to inertial confinement fusion. The equations are integrated implicitly by time-splitting method. Thr...A Fokker-Planck code is developed based upon Epperlein's scheme to investigate laser-produced plasmas in relevance to inertial confinement fusion. The equations are integrated implicitly by time-splitting method. Three test problems are simulated to show the versatility of the code. The results are in good agreement with the existing simulations.展开更多
In this work,we studied the effects of the discharge current,gas flow rate and vessel pressure on the electron temperature and density of Ar plasma by Langmuir probe measurement.The argon plasma was created by a one-c...In this work,we studied the effects of the discharge current,gas flow rate and vessel pressure on the electron temperature and density of Ar plasma by Langmuir probe measurement.The argon plasma was created by a one-cathode arc source.The experimental results show that with increasing discharge current and gas flow rate,the electron temperature and density increase.It is found that when the discharge current is 70 A,90 A and HO A at an argon flow rate of2000 seem,the electron densities at about 0.186 m distance from the nozzle are 13.00×10^18 m^-3,14.04×10^18 m^-3 and 15.62×10^18 m^-3,and the electron temperatures are 0.38 eV,0.58 eV and0.71 eV,respectively.The positive I-V characteristic is explained.展开更多
Spectroscopic emission of lead plasma, generated by the fundamental (1064 nm) and second harmonics (532 nm) of a Q-switched pulsed Nd: YAG laser, is studied. The spectral lines of neutral atoms and singly ionized...Spectroscopic emission of lead plasma, generated by the fundamental (1064 nm) and second harmonics (532 nm) of a Q-switched pulsed Nd: YAG laser, is studied. The spectral lines of neutral atoms and singly ionized lead ions were shown predominantly. The profiles of neutral lead lines observed were used to extract the excitation temperature using Boltzmann plots, whereas electron number density was determined from the profile of Stark broadened line. The variations of excitation temperature and electron number density as a function of laser energy were studied.展开更多
Laser-induced steel plasma is generated by focusing a Q-switched Nd:YAG visible laser(532 nm wavelength) with an irradiance of 1 x 109 W/cm2 on a steel sample in air at atmospheric pressure.An Echelle spectrograph ...Laser-induced steel plasma is generated by focusing a Q-switched Nd:YAG visible laser(532 nm wavelength) with an irradiance of 1 x 109 W/cm2 on a steel sample in air at atmospheric pressure.An Echelle spectrograph coupled with a gateable intensified charge-coupled detector is used to record the plasma emissions.Using time-resolved spectroscopic measurements of the plasma emissions,the temperature and electron number density of the steel plasma are determined for many times of the detector delay.The validity of the assumption by the spectroscopic methods that the laser-induced plasma(LIP) is optically thin and is also in local thermodynamic equilibrium(LTE) has been evaluated for many delay times.From the temporal evolution of the intensity ratio of two Fe I lines and matching it with its theoretical value,the delay times where the plasma is optically thin and is also in LTE are found to be 800 ns,900 ns and 1000 ns.展开更多
A high-flux linear plasma device in Sichuan University plasma-surface interaction(SCU-PSI)based on a cascaded arc source has been established to simulate the interactions between helium and hydrogen plasma with the ...A high-flux linear plasma device in Sichuan University plasma-surface interaction(SCU-PSI)based on a cascaded arc source has been established to simulate the interactions between helium and hydrogen plasma with the plasma-facing components in fusion reactors.In this paper,the helium plasma has been characterized by a double-pin Langmuir probe.The results show that the stable helium plasma beam with a diameter of 26 mm was constrained very well at a magnetic field strength of 0.3 T.The core density and ion flux of helium plasma have a strong dependence on the applied current,magnetic field strength and gas flow rate.It could reach an electron density of1.2×10^19m^-3and helium ion flux of 3.2×10^22m^-2s^-1,with a gas flow rate of 4 standard liter per minute,magnetic field strength of 0.2 T and input power of 11 k W.With the addition of-80 Vapplied to the target to increase the helium ion energy and the exposure time of 2 h,the flat top temperature reached about 530°C.The different sizes of nanostructured fuzz on irradiated tungsten and molybdenum samples surfaces under the bombardment of helium ions were observed by scanning electron microscopy.These results measured in the SCU-PSI linear device provide a reference for International Thermonuclear Experimental Reactor related PSI research.展开更多
Dipole Research EXperiment(DREX) is a new terrella device as part of the Space Plasma Environment Research Facility(SPERF) for laboratory studies of space physics relevant to the inner magnetospheric plasmas. Adeq...Dipole Research EXperiment(DREX) is a new terrella device as part of the Space Plasma Environment Research Facility(SPERF) for laboratory studies of space physics relevant to the inner magnetospheric plasmas. Adequate plasma sources are very important for DREX to achieve its scientific goals. According to different research requirements, there are two density regimes for DREX. The low density regime will be achieved by an electron cyclotron resonance(ECR) system for the ‘whistler/chorus' wave investigation, while the high density regime will be achieved by biased cold cathode discharge for the desired ‘Alfvén' wave study. The parameters of ‘whistler/chorus' waves and ‘Alfvén' waves are determined by the scaling law between space and laboratory plasmas in the current device. In this paper, the initial design of these two plasma sources for DREX is described. Focus is placed on the chosen frequency and operation mode of the ECR system which will produce relatively low density ‘artificial radiation belt' plasmas and the seed electrons, followed by the design of biased cold cathode discharge to generate plasma with high density.展开更多
Stimulated Raman scattering(SRS)in a longitudinal magnetized plasma is studied by theoretical analysis and kinetic simulation.The linear growth rate derived via one-dimensional fluid theory shows the dependence on the...Stimulated Raman scattering(SRS)in a longitudinal magnetized plasma is studied by theoretical analysis and kinetic simulation.The linear growth rate derived via one-dimensional fluid theory shows the dependence on the plasma density,electron temperature,and magnetic field intensity.One-dimensional particle-in-cell simulations are carried out to examine the kinetic evolution of SRS under low magnetic intensity of w_c/w_0<0.01.There are two density regions distinguished in which the absolute growth of enveloped electrostatic waves and spectrum present quite different characteristics.In a relatively low-density plasma(ne~0.20 nc),the plasma wave presents typical absolute growth and the magnetic field alleviates linear SRS.While in the plasma whose density is near the cut-off point(ne~0.23 nc),the magnetic field induces a spectral splitting of the backscattering and forward-scattering waves.It has been observed in simulations and verified by theoretical analysis.Due to this effect,the onset of reflectivity delays,and the plasma waves form high-frequency oscillation and periodic envelope structure.The split wavenumber Dk/k0 is proportional to the magnetic field intensity and plasma density.These studies provide novel insight into the kinetic behavior of SRS in magnetized plasmas.展开更多
The collective interaction between intense ion beams and plasmas is studied by simulations and experiments,where an intense proton beam produced by a short pulse laser is injected into a pre-ionized gas.It is found th...The collective interaction between intense ion beams and plasmas is studied by simulations and experiments,where an intense proton beam produced by a short pulse laser is injected into a pre-ionized gas.It is found that,depending on its current density,collective effects can significantly alter the propagated ion beam and the stopping power.The quantitative agreement that is found between theories and experiments constitutes the first validation of the collective interaction theory.The effects in the interaction between intense ion beams and background gas plasmas are of importance for the design of laser fusion reactors as well as for beam physics.展开更多
By using the traditional perturbation method, we obtain the nonlinear Sehrodinger equation for one-dimensional Schrodinger-Poisson system. Some of its solutions can explain previous results.
A Monte Carlo code is developed to study mega-electron-volt (MeV) electron scattering and transport in plasma based on multiple scattering. A scaling law relating the angular width of a scattered beam to the inciden...A Monte Carlo code is developed to study mega-electron-volt (MeV) electron scattering and transport in plasma based on multiple scattering. A scaling law relating the angular width of a scattered beam to the incident electron energy and the areal density of plasma is found, which may provide a method of MeV electron radiography for diagnosing the area/density of high-temperature, dense plasma under fusion conditions. The study on the MeV electron beam radiography also shows that plasma density interfaces could be discriminated by electron scattering.展开更多
An electron Penning-Malmberg trap, which can confine an electron column and provide a good platform to investigate the cross-field transportation of a strongly magnetized electron plasma, has been set up. With the dev...An electron Penning-Malmberg trap, which can confine an electron column and provide a good platform to investigate the cross-field transportation of a strongly magnetized electron plasma, has been set up. With the device, an electron plasma with a density of 107 cm-3 can be confined for a relatively long time. The structure of the trap, electron source, as well as the way how to measure electron plasma density profile and velocity distribution are introduced in detail.展开更多
Cylindrical and spherical dust-electron-acoustic (DEA) shock waves and double layers in an unmagnetized, col- lisionless, complex or dusty plasma system are carried out. The plasma system is assumed to be composed o...Cylindrical and spherical dust-electron-acoustic (DEA) shock waves and double layers in an unmagnetized, col- lisionless, complex or dusty plasma system are carried out. The plasma system is assumed to be composed of inertial and viscous cold electron fluids, nonextensive distributed hot electrons, Maxwellian ions, and negatively charged stationary dust grains. The standard reductive perturbation technique is used to derive the nonlinear dynamical equations, that is, the nonplanar Burgers equation and the nonplanar further Burgers equation. They are also numerically analyzed to investigate the basic features of shock waves and double layers (DLs). It is observed that the roles of the viscous cold electron fluids, nonextensivity of hot electrons, and other plasma parameters in this investigation have significantly modified the basic features (such as, polarity, amplitude and width) of the nonplanar DEA shock waves and DLs. It is also observed that the strength of the shock is maximal for the spherical geometry, intermediate for cylindrical geometry, while it is minimal for the planar geometry. The findings of our results obtained from this theoretical investigation may be useful in understanding the nonlinear phenomena associated with the nonplanar DEA waves in both space and laboratory plasmas.展开更多
Microwave electron cyclotron resonance plasma enhanced chemical vapor depositionwas used to grow silicon dioxide films on crystalline silicon substrate for planar optical waveguides.The relationship between plasma par...Microwave electron cyclotron resonance plasma enhanced chemical vapor depositionwas used to grow silicon dioxide films on crystalline silicon substrate for planar optical waveguides.The relationship between plasma parameters and deposition rates was investigated, and the influ-ence of radio frequency substrate bias on properties of SiO2 films was also preliminarily studied.X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron mi-croscopy, atomic force microscopy and elllipsometry were used to characterize the deposited films,showing that SiO2 films with good structural and optical properties prepared at low temperaturehave been achieved. They can basically meet the requirements of integrated optical waveguides.展开更多
文摘Making use of the relativistic BBGKY technique,the relativistic generalization of Landau collision integral is obtained.Furthermore,we calculate the relativistic hydrodynamic modes up to the second order in the hydrodynamic wave number.Combining Résibois' method,we present the first principle formula of the relativistic heat conductivity of Coulomb electronic plasmas for low-order corrections.
文摘The (DC-GDPAU) is a DC glow discharge plasma experiment that was designed, established, and operated in the Physics Department at Ain Shams University (Egypt). The aim of this experiment is to study and improve some properties of a printed circuit board (PCB) by exposing it to the plasma. The device consists of cylindrical discharge chamber with movable parallel circular copper electrodes (cathode and anode) fixed inside it. The distance between them is 12 cm. This plasma experiment works in a low-pressure range (0.15 - 0.70 Torr) for Ar gas with a maximum DC power supply of 200 W. The Paschen curves and electrical plasma parameters (current, volt, power, resistance) characterized to the plasma have been measured and calculated at each cm between the two electrodes. Besides, the electron temperature and ion density are obtained at different radial distances using a double Langmuir probe. The electron temperature (<em>KT<sub>e</sub></em>) was kept stable in range 6.58 to 10.44 eV;whereas the ion density (<em>ni</em>) was in range from 0.91 × 10<sup>10</sup> cm<sup><span style="white-space:nowrap;">−</span>3</sup> to 1.79 × 10<sup>10</sup> cm<sup><span style="white-space:nowrap;">−</span>3</sup>. A digital optical microscope (800×) was employed to draw a comparison between the pre-and after effect of exposure to plasma on the shaping of the circuit layout. The experimental results show that the electrical conductivity increased after plasma exposure, also an improvement in the adhesion force in the Cu foil surface. A significant increase in the conductivity can be directly related to the position of the sample surfaces as well as to the time of exposure. This shows the importance of the obtained results in developing the PCBs manufacturing that uses in different microelectronics devices like those onboard of space vehicles.
文摘Ball Lightning (BL) is a “plasma bubble” that has very remarkable properties. Its membrane contains a higher density of charged particles than the ambient medium. They are held together by mutually attracting surface charges, generated by collective oscillations of all unbound electrons inside the membrane. Energy losses by collisions and emission of radiation, as well as losses of charged particles by recombination, are compensated by extracting other ones from atmospheric air. Since that occurs in a special rhythmic way, this leads to “parametric amplification” of the oscillations of all unbound electrons in the plasma membrane. Moreover, BL is attracted by higher concentrations of charged particles in atmospheric air. Too much of them leads to explosion and too few to extinction of visible BL. Since the electric charge of BL is oscillating, it is also attracted by metals, water and glass. It can then heat, melt and vaporize these materials without stored energy. BL is even able to pass through window panes in 3 different ways, but that can also be explained.
基金the National Natural Science Foundation of China(Grant No.11875222)。
文摘Through diagnosing the plasma density and calculating the intensity of microwave electric field,four 10 cm electron cyclotron resonance(ECR)ion sources with different magnetic field structures are studied to reveal the inside interaction between the plasma,magnetic field and microwave electric field.From the diagnosing result it can be found that the plasma density distribution is controlled by the plasma generation and electron loss volumes associated with the magnetic field and microwave power level.Based on the cold plasma hypothesis and diagnosing result,the microwave electric field intensity distribution in the plasma is calculated.The result shows that the plasma will significantly change the distribution of the microwave electric field intensity to form a bow shape.From the boundary region of the shape to the center,the electric field intensity varies from higher to lower and the diagnosed density inversely changes.If the bow and its inside lower electric field intensity region are close to the screen grid,the performance of ion beam extracting will be better.The study can provide useful information for the creating of 10 cm ECR ion source and understanding its mechanism.
文摘We report spectroscopic studies on plasma electron number density of laser-induced plasma produced by ns-Nd:YAG laser light pulses on an aluminum sample in air at atmospheric pressure. The effect of different laser energy and the effect of different laser wavelengths were compared. The experimentally observed line profiles of neutral aluminum have been used to extract the excitation temperature using the Boltzmann plot method, whereas the electron number density has been determined from the Stark broadened as well as using the Saha-Boltzmann equation (SBE). Each approach was also carried out by using the AI emission line and Mg emission lines. It was observed that the,SBE method generated a little higher electron number density value than the Stark broadening, method, but within the experimental uncertainty range. Comparisons of Ne determined by the two methods show the presence of a linear relation which is independent of laser energy or laser wavelength. These results show the applicability of the SBE method for Are determination, especially when the system does not have any pure emission lines whose electron impact factor is known, Also use of Mg lines gives superior results than Al lines.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB23030100)
文摘Inductively coupled radio-frequency(RF) plasma neutralizer(RPN) is an insert-free device that can be employed as an electron source in electric propulsion applications.Electron-extraction characteristics of the RPN are related to the bulk plasma parameters and the device's geometry.Therefore,the effects of different electron-extraction apertures and operational parameters upon the electron-extraction characteristics are investigated according to the global nonambipolar flow and sheath model.Moreover,these models can also be used to explain why the electron-extraction characteristics of the RPN strongly depend upon the formation of the anode spot.During the experimental study,two types of anode spots are observed.Each of them has unique characteristics of electron extraction.Moreover,the hysteresis of an anode spot is observed by changing the xenon volume-flow rates or the bias voltages.In addition,the rapid ignited method,gas-utilization factor,electron-extraction cost and other factors that need to be considered in the design of the RPN are also discussed.
基金Major State Basic Research Development Program of China (program 973,No. 2008CB717807)ITER Program Supporting Research in China (No. 2010GB108004)
文摘Plasma electron density is one of the most fundamental parameters in the study of tokamak plasma physics.The method of plasma electron density measuring and processing on the Joint Texas Experimental Tokamak(J-TEXT) was presented in this paper.The principle of the plasma electron density measuring by hydrogen cyanide(HCN) laser interferometer was introduced.Room temperature triglycine sulface(TGS) detector was used to obtain the beat signal of HCN,and phase difference was measured by high-speed acquisition card DAQ2010.Based on the signal characteristics,a specific HCN processing algorithm was designed to eliminate the baseline offset accurately and process overturns of HCN signals effectively.As a result,plasma electron density with high accuracy and low noise has been obtained during the J-TEXT tokamak experiment.
基金National Natural Science Foundation of China(Nos.10375064,10575102,10625523)Nation High-Tech ICF Committee
文摘A Fokker-Planck code is developed based upon Epperlein's scheme to investigate laser-produced plasmas in relevance to inertial confinement fusion. The equations are integrated implicitly by time-splitting method. Three test problems are simulated to show the versatility of the code. The results are in good agreement with the existing simulations.
基金supported by the International Thermonuclear Experimental Reactor(ITER) Program Special of Ministry of Science and Technology(No.2013GB114003)National Natural Science Foundation of China(Nos.11102221,11275135,11475122)
文摘In this work,we studied the effects of the discharge current,gas flow rate and vessel pressure on the electron temperature and density of Ar plasma by Langmuir probe measurement.The argon plasma was created by a one-cathode arc source.The experimental results show that with increasing discharge current and gas flow rate,the electron temperature and density increase.It is found that when the discharge current is 70 A,90 A and HO A at an argon flow rate of2000 seem,the electron densities at about 0.186 m distance from the nozzle are 13.00×10^18 m^-3,14.04×10^18 m^-3 and 15.62×10^18 m^-3,and the electron temperatures are 0.38 eV,0.58 eV and0.71 eV,respectively.The positive I-V characteristic is explained.
基金financially supported by the Higher Education Commission (HEC) and Pakistan Science Foundation (PSF-134)MCS, National University of Sciences & Technology (NUST) for encouragement in terms of provision of time and financial support to carry out research work
文摘Spectroscopic emission of lead plasma, generated by the fundamental (1064 nm) and second harmonics (532 nm) of a Q-switched pulsed Nd: YAG laser, is studied. The spectral lines of neutral atoms and singly ionized lead ions were shown predominantly. The profiles of neutral lead lines observed were used to extract the excitation temperature using Boltzmann plots, whereas electron number density was determined from the profile of Stark broadened line. The variations of excitation temperature and electron number density as a function of laser energy were studied.
文摘Laser-induced steel plasma is generated by focusing a Q-switched Nd:YAG visible laser(532 nm wavelength) with an irradiance of 1 x 109 W/cm2 on a steel sample in air at atmospheric pressure.An Echelle spectrograph coupled with a gateable intensified charge-coupled detector is used to record the plasma emissions.Using time-resolved spectroscopic measurements of the plasma emissions,the temperature and electron number density of the steel plasma are determined for many times of the detector delay.The validity of the assumption by the spectroscopic methods that the laser-induced plasma(LIP) is optically thin and is also in local thermodynamic equilibrium(LTE) has been evaluated for many delay times.From the temporal evolution of the intensity ratio of two Fe I lines and matching it with its theoretical value,the delay times where the plasma is optically thin and is also in LTE are found to be 800 ns,900 ns and 1000 ns.
基金supported by International Thermonuclear Experimental Reactor(ITER) program special(Grant No.2013GB114003)National Natural Science Foundation of China(project approval Nos.11275135,11475122)
文摘A high-flux linear plasma device in Sichuan University plasma-surface interaction(SCU-PSI)based on a cascaded arc source has been established to simulate the interactions between helium and hydrogen plasma with the plasma-facing components in fusion reactors.In this paper,the helium plasma has been characterized by a double-pin Langmuir probe.The results show that the stable helium plasma beam with a diameter of 26 mm was constrained very well at a magnetic field strength of 0.3 T.The core density and ion flux of helium plasma have a strong dependence on the applied current,magnetic field strength and gas flow rate.It could reach an electron density of1.2×10^19m^-3and helium ion flux of 3.2×10^22m^-2s^-1,with a gas flow rate of 4 standard liter per minute,magnetic field strength of 0.2 T and input power of 11 k W.With the addition of-80 Vapplied to the target to increase the helium ion energy and the exposure time of 2 h,the flat top temperature reached about 530°C.The different sizes of nanostructured fuzz on irradiated tungsten and molybdenum samples surfaces under the bombardment of helium ions were observed by scanning electron microscopy.These results measured in the SCU-PSI linear device provide a reference for International Thermonuclear Experimental Reactor related PSI research.
基金supported by National Natural Science Foundation of China(Nos.11505040,11261140326,11405038 and 51577043)China Postdoctoral Science Foundation(Nos.2016M591518,2015M570283)HIT.NSRIF under Grant No.2017008
文摘Dipole Research EXperiment(DREX) is a new terrella device as part of the Space Plasma Environment Research Facility(SPERF) for laboratory studies of space physics relevant to the inner magnetospheric plasmas. Adequate plasma sources are very important for DREX to achieve its scientific goals. According to different research requirements, there are two density regimes for DREX. The low density regime will be achieved by an electron cyclotron resonance(ECR) system for the ‘whistler/chorus' wave investigation, while the high density regime will be achieved by biased cold cathode discharge for the desired ‘Alfvén' wave study. The parameters of ‘whistler/chorus' waves and ‘Alfvén' waves are determined by the scaling law between space and laboratory plasmas in the current device. In this paper, the initial design of these two plasma sources for DREX is described. Focus is placed on the chosen frequency and operation mode of the ECR system which will produce relatively low density ‘artificial radiation belt' plasmas and the seed electrons, followed by the design of biased cold cathode discharge to generate plasma with high density.
基金supported by the National Key Research and Development Program of China (No. 2016YFA0401100)the Strategic Priority Re-search Program of Chinese Academy of Sciences (No. XDA25050700)+1 种基金the Scientific Research Foundation of Hunan Provincial Education Department (No. 20A042)National Natural Science Foundation of China (Nos. 11805062, 11675264, 11774430)
文摘Stimulated Raman scattering(SRS)in a longitudinal magnetized plasma is studied by theoretical analysis and kinetic simulation.The linear growth rate derived via one-dimensional fluid theory shows the dependence on the plasma density,electron temperature,and magnetic field intensity.One-dimensional particle-in-cell simulations are carried out to examine the kinetic evolution of SRS under low magnetic intensity of w_c/w_0<0.01.There are two density regions distinguished in which the absolute growth of enveloped electrostatic waves and spectrum present quite different characteristics.In a relatively low-density plasma(ne~0.20 nc),the plasma wave presents typical absolute growth and the magnetic field alleviates linear SRS.While in the plasma whose density is near the cut-off point(ne~0.23 nc),the magnetic field induces a spectral splitting of the backscattering and forward-scattering waves.It has been observed in simulations and verified by theoretical analysis.Due to this effect,the onset of reflectivity delays,and the plasma waves form high-frequency oscillation and periodic envelope structure.The split wavenumber Dk/k0 is proportional to the magnetic field intensity and plasma density.These studies provide novel insight into the kinetic behavior of SRS in magnetized plasmas.
基金We acknowledge the support of the LULI technical teams and support from Grant No.E1127 from Region Ile-de-France.S.N.C is supported by the National Science Foundation under Grant No.OISE-1064468This work was partly done within the LABEX Plas@Par project and supported by Grant No.11-IDEX-0004-02 and ANR-17-CE30-0026-Pinnacle from Agence Nationale de la Recherche+2 种基金It has received funding from the European Union's Horizon 2020 Research and Innovation programme under LASERLAB-EUROPE grant agreement No.654148 Laserlab-EuropeThis work has been carried out within the framework of the EUROfusion Consortium and has received funding,through the ToIFE,from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No.633053The views and opinions expressed herein do not necessarily reflect those of the European Commission.This work was also supported in part by JSPS KAKENHI Grant No.15H03758.
文摘The collective interaction between intense ion beams and plasmas is studied by simulations and experiments,where an intense proton beam produced by a short pulse laser is injected into a pre-ionized gas.It is found that,depending on its current density,collective effects can significantly alter the propagated ion beam and the stopping power.The quantitative agreement that is found between theories and experiments constitutes the first validation of the collective interaction theory.The effects in the interaction between intense ion beams and background gas plasmas are of importance for the design of laser fusion reactors as well as for beam physics.
文摘By using the traditional perturbation method, we obtain the nonlinear Sehrodinger equation for one-dimensional Schrodinger-Poisson system. Some of its solutions can explain previous results.
基金Supported by the National Natural Science Foundation of China under Grant No 11375194
文摘A Monte Carlo code is developed to study mega-electron-volt (MeV) electron scattering and transport in plasma based on multiple scattering. A scaling law relating the angular width of a scattered beam to the incident electron energy and the areal density of plasma is found, which may provide a method of MeV electron radiography for diagnosing the area/density of high-temperature, dense plasma under fusion conditions. The study on the MeV electron beam radiography also shows that plasma density interfaces could be discriminated by electron scattering.
基金This work was supported by National Natural Science Foundation of China No. 19975047, 10075046 .
文摘An electron Penning-Malmberg trap, which can confine an electron column and provide a good platform to investigate the cross-field transportation of a strongly magnetized electron plasma, has been set up. With the device, an electron plasma with a density of 107 cm-3 can be confined for a relatively long time. The structure of the trap, electron source, as well as the way how to measure electron plasma density profile and velocity distribution are introduced in detail.
文摘Cylindrical and spherical dust-electron-acoustic (DEA) shock waves and double layers in an unmagnetized, col- lisionless, complex or dusty plasma system are carried out. The plasma system is assumed to be composed of inertial and viscous cold electron fluids, nonextensive distributed hot electrons, Maxwellian ions, and negatively charged stationary dust grains. The standard reductive perturbation technique is used to derive the nonlinear dynamical equations, that is, the nonplanar Burgers equation and the nonplanar further Burgers equation. They are also numerically analyzed to investigate the basic features of shock waves and double layers (DLs). It is observed that the roles of the viscous cold electron fluids, nonextensivity of hot electrons, and other plasma parameters in this investigation have significantly modified the basic features (such as, polarity, amplitude and width) of the nonplanar DEA shock waves and DLs. It is also observed that the strength of the shock is maximal for the spherical geometry, intermediate for cylindrical geometry, while it is minimal for the planar geometry. The findings of our results obtained from this theoretical investigation may be useful in understanding the nonlinear phenomena associated with the nonplanar DEA waves in both space and laboratory plasmas.
文摘Microwave electron cyclotron resonance plasma enhanced chemical vapor depositionwas used to grow silicon dioxide films on crystalline silicon substrate for planar optical waveguides.The relationship between plasma parameters and deposition rates was investigated, and the influ-ence of radio frequency substrate bias on properties of SiO2 films was also preliminarily studied.X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, scanning electron mi-croscopy, atomic force microscopy and elllipsometry were used to characterize the deposited films,showing that SiO2 films with good structural and optical properties prepared at low temperaturehave been achieved. They can basically meet the requirements of integrated optical waveguides.