期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Modern Electronic Information Industry to Promote Economic and Social Information—An Interview with Electronics Industry Minister Hu Qili
1
作者 Jiang Yan 《China's Foreign Trade》 1995年第5期6-7,共2页
Spurred by the world information tide, China has organized a series of information projects, called the "Three Gold" projects. Recently I had an interview with Mr. Hu Qili, Minister of Electronics Industry, ... Spurred by the world information tide, China has organized a series of information projects, called the "Three Gold" projects. Recently I had an interview with Mr. Hu Qili, Minister of Electronics Industry, about the establishment of China’s modern Electronic Information Industry. Mr. Hu told me that information is the mark of development of a modern society and electronics is the major means of carrying information. Establishing 展开更多
关键词 Modern electronic Information Industry to Promote Economic and Social Information Gold Co An Interview with electronics Industry Minister Hu Qili
下载PDF
Electron promoted ZnO for catalytic synthesis of higher alcohols from syngas
2
作者 Fang Li Qian Zhang +3 位作者 Jing Liu Nan Cui Guoqing Guan Wei Huang 《Green Energy & Environment》 SCIE EI CSCD 2022年第6期1390-1400,共11页
Direct conversion of syngas from those non-petroleum carbon resources to higher alcohols are very attractive due to the process simplicity with low energy consumption.However,the reaction always suffers from low yield... Direct conversion of syngas from those non-petroleum carbon resources to higher alcohols are very attractive due to the process simplicity with low energy consumption.However,the reaction always suffers from low yield as well as low selectivity.Herein,effective increase of higher alcohols proportion in the product is realized by direct conversion of syngas over electronically-modulated ZnO semiconductor via Cu doping.It is considered that the lower Fermi level and narrower band gap of catalysts by embedding Cu^(2+)into ZnO lattice could facilitate donor reaction by boosting the process for the reactants to obtain electrons on the catalyst surface for the formation of CH_(x) species and carbon chain growth,in which the Cu doping on ZnO lattice play important role in the promotion of CO adsorption.As a result,4 mol%Cu doped ZnO exhibits a highest C_(2+) OH/ROH fraction of 48.1%.Selectivity of catalysts from straight chain alcohol is better than from branch chain alcohol,which is different from promoted Cu/ZnO based catalyst.However,over-doping of Cu(7 mol%)on ZnO results in the aggregation Cu species on ZnO surface,leading to a sharp decrease of higher alcohols proportion to 3.2%.The results shed light on the nature that a direct correlation between semiconductor Fermi level and synthesis of higher alcohols,and the semiconductor-based catalysts mainly accelerate the hydrogenation reactions by enhancing thermally excited electron transfer. 展开更多
关键词 Semiconductor catalysts Electron promotion Fermi level ZNO Higher alcohols
下载PDF
Eliminating nitrogen chemisorption barrier with single-atom supported yttrium cluster via electronic promoting effect for highly efficient ammonia synthesis
3
作者 Yuzhuo Jiang Mengfan Wang +6 位作者 Sisi Liu Lifang Zhang Siyi Qian Yufeng Cao Yu Cheng Tao Qian Chenglin Yan 《Nano Research》 SCIE EI CSCD 2023年第2期2185-2191,共7页
Nitrogen chemisorption is a prerequisite for efficient ammonia synthesis under ambient conditions,but promoting this process remains a significant challenge.Here,by loading yttrium clusters onto a single-atom support,... Nitrogen chemisorption is a prerequisite for efficient ammonia synthesis under ambient conditions,but promoting this process remains a significant challenge.Here,by loading yttrium clusters onto a single-atom support,an electronic promoting effect is triggered to successfully eliminate the nitrogen chemisorption barrier and achieve highly efficient ammonia synthesis.Density functional theory calculations reveal that yttrium clusters with abundant electron orbitals can provide considerable electrons and greatly promote electron backdonation to the N2 antibonding orbitals,making the chemisorption process exothermic.Moreover,according to the“hot atom”mechanism,the energy released during exothermic N2 chemisorption would benefit subsequent N2 cleavage and hydrogenation,thereby dramatically reducing the energy barrier of the overall process.As expected,the proof-of-concept catalyst achieves a prominent NH3 yield rate of 48.1μg·h^(−1)·mg^(−1)at−0.2 V versus the reversible hydrogen electrode,with a Faradaic efficiency of up to 69.7%.This strategy overcomes one of the most serious obstacles for electrochemical ammonia synthesis,and provides a promising method for the development of catalysts with high catalytic activity and selectivity. 展开更多
关键词 ammonia synthesis yttrium cluster electronic promoting effect rate-determining step nitrogen chemisorption barrier
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部