It is important to develop green and sustainable approaches to enhance electrochemical charge storage efficiencies.Herein,a two-step in-situ growth process was developed to fabricate carbon fiber paper-supported CeO_(...It is important to develop green and sustainable approaches to enhance electrochemical charge storage efficiencies.Herein,a two-step in-situ growth process was developed to fabricate carbon fiber paper-supported CeO_(2)/MnO_(2) composite(CeO_(2)/MnO_(2)–CFP)as a binder-free photoelectrode for the photo-assisted electrochemical charge storage.The formation of CeO_(2)/MnO_(2) type II heterojunction largely enhanced the separation efficiency of photo-generated charge carriers,resulting in a substantially enhanced photo-assisted charging capability of~20%.Furthermore,it retained a large part of its photo-enhanced capacitance(~56%)in dark even after the illumination was off for 12 h,which could be attributed to its slow release of stored photo-generated electrons from its specific band structure to avoid their reaction with O_(2) in dark.This study proposed the design principles for supercapacitors with both the photo-assisted charging capability and its long-lasting retainment in dark,which may be readily applied to other pseudocapacitive materials to better utilize solar energy.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51902271)the Fundamental Research Funds for the Central Universities(Grant Nos.2682021CX116,2682020CX07,and 2682020CX08)Sichuan Science and Technology Program(Grant Nos.2020YJ0259,2020YJ0072,and 2021YFH0163).
文摘It is important to develop green and sustainable approaches to enhance electrochemical charge storage efficiencies.Herein,a two-step in-situ growth process was developed to fabricate carbon fiber paper-supported CeO_(2)/MnO_(2) composite(CeO_(2)/MnO_(2)–CFP)as a binder-free photoelectrode for the photo-assisted electrochemical charge storage.The formation of CeO_(2)/MnO_(2) type II heterojunction largely enhanced the separation efficiency of photo-generated charge carriers,resulting in a substantially enhanced photo-assisted charging capability of~20%.Furthermore,it retained a large part of its photo-enhanced capacitance(~56%)in dark even after the illumination was off for 12 h,which could be attributed to its slow release of stored photo-generated electrons from its specific band structure to avoid their reaction with O_(2) in dark.This study proposed the design principles for supercapacitors with both the photo-assisted charging capability and its long-lasting retainment in dark,which may be readily applied to other pseudocapacitive materials to better utilize solar energy.