期刊文献+
共找到298篇文章
< 1 2 15 >
每页显示 20 50 100
P-induced electron transfer interaction for enhanced selective hydrogenation rearrangement of furfural to cyclopentanone
1
作者 Weichen Wang Hongke Zhang +4 位作者 Yidan Wang Fangyuan Zhou Zhiyu Xiang Wanbin Zhu Hongliang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期43-51,共9页
Optimizing the intrinsic activity of non-noble metal by precisely tailoring electronic structure offers an appealing way to construct cost-effective catalysts for selective biomass valorization.Herein,we reported a P-... Optimizing the intrinsic activity of non-noble metal by precisely tailoring electronic structure offers an appealing way to construct cost-effective catalysts for selective biomass valorization.Herein,we reported a P-doping bifunctional catalyst(Ni-P/mSiO_(2))that achieved 96.6%yield for the hydrogenation rearrangement of furfural to cyclopentanone at mild conditions(1 MPaH_(2),150°C).The turnover frequency of Ni-P/mSiO_(2)was 411.9 h^(-1),which was 3.2-fold than that of Ni/mSiO_(2)(127.2 h^(-1)).Detailed characterizations and differential charge density calculations revealed that the electron-deficient Niδ+species were generated by the electron transfer from Ni to P,which promoted the ring rearrangement reaction.Density functional theory calculations illustrated that the presence of P atoms endowed furfural tilted adsorb on the Ni surface by the C=O group and facilitated the desorption of cyclopentanone.This work unraveled the connection between the localized electronic structures and the catalytic properties,so as to provide a promising reference for designing advanced catalysts for biomass valorization. 展开更多
关键词 FURFURAL Hydrogenation rearrangement P-DOPING Electron transfer Biomass valorization
下载PDF
Construction of Pd-doped RuO_(2) nanosheets for efficient and stable acidic water oxidation
2
作者 Yibo Liu Xing Hu +4 位作者 Chenxi Liu Shan Zhu Kezhu Jiang Feng Liu Shijian Zheng 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期937-948,共12页
RuO_(2) has been considered a potential alternative to commercial IrO_(2) for the oxygen evolution reaction(OER)due to its superior intrinsic activity.However,its inherent structure dissolution in acidic environments ... RuO_(2) has been considered a potential alternative to commercial IrO_(2) for the oxygen evolution reaction(OER)due to its superior intrinsic activity.However,its inherent structure dissolution in acidic environments restricts its commercial applications.In this study,we report a novel Pd-doped ruthenium oxide(Pd–RuO_(2))nanosheet catalyst that exhibits improved activity and stability through a synergistic effect of Pd modulation of Ru electronic structure and the two-dimensional structure.The catalyst exhibits excellent performance,achieving an overpotential of only 204 mVat a current density of 10 mA cm^(-2).Impressively,after undergoing 8000 cycles of cyclic voltammetry testing,the overpotential merely decreased by 5 mV.The PEM electrolyzer with Pd0.08Ru0.92O_(2) as an anode catalyst survived an almost 130 h operation at 200 mA cm^(-2).To elucidate the underlying mechanisms responsible for the enhanced stability,we conducted an X-ray photoelectron spectroscopy(XPS)analysis,which reveals that the electron transfer from Pd to Ru effectively circumvents the over-oxidation of Ru,thus playing a crucial role in enhancing the catalyst's stability.Furthermore,density functional theory(DFT)calculations provide compelling evidence that the introduction of Pd into RuO_(2) effectively modulates electron correlations and facilitates the electron transfer from Pd to Ru,thereby preventing the overoxidation of Ru.Additionally,the application of the two-dimensional structure effectively inhibited the aggregation and growth of nanoparticles,further bolstering the structural integrity of the catalyst. 展开更多
关键词 Oxygen evolution reaction Pd-doped ruthenium oxide Two-dimensional structure Electron transfer Stability
下载PDF
Atomic-level coupled RuO_(2)/BaRuO_(3) heterostructure for efficient alkaline hydrogen evolution reaction
3
作者 Yueying Yan Tian Meng +4 位作者 Yuting Chen Yang Yang Dewen Wang Zhicai Xing Xiurong Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期356-362,I0009,共8页
The slow water dissociation is the rate-determining step that slows down the reaction rate in alkaline hydrogen evolution reaction(HER).Optimizing the surface electronic structure of the catalyst to lower the energy b... The slow water dissociation is the rate-determining step that slows down the reaction rate in alkaline hydrogen evolution reaction(HER).Optimizing the surface electronic structure of the catalyst to lower the energy barrier of water dissociation and regulating the binding strength of adsorption intermediates are crucial strategy for boosting the catalytic performance of HER.In this study,RuO_(2)/BaRuO_(3)(RBRO)heterostructures with abundant oxygen vacancies and lattice distortion were in-situ constructed under a low temperature via the thermal decomposition of gel-precursor.The RBRO heterostructures obtained at 550℃ exhibited the highest HER activity in 1 M KOH,showing an ultra-low overpotential of 16 mV at 10 mA cm^(-2)and a Tafel slope of 33.37 m V dec^(-1).Additionally,the material demonstrated remarkable durability,with only 25 mV of degradation in overpotential after 200 h of stability testing at 10 mA cm^(-2).Density functional theory calculations revealed that the redistribution of charges at the heterojunction interface can optimize the binding energies of H*and OH*and effectively lower the energy barrier of water dissociation.This research offers novel perspectives on surpassing the water dissociation threshold of alkaline HER catalysts by means of a systematic design of heterogeneous interfaces. 展开更多
关键词 HETEROSTRUCTURE Hydrogen evolution reaction Interfacial electron transfer Oxygen vacancies
下载PDF
Precision tuning of highly efficient Pt-based ternary alloys on nitrogen-doped multi-wall carbon nanotubes for methanol oxidation reaction
4
作者 Xingqun Zheng Zhengcheng Wang +3 位作者 Qian Zhou Qingmei Wang Wei He Shun Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期242-251,I0006,共11页
The electrochemical methanol oxidation is a crucial reaction in the conversion of renewable energy.To enable the widespread adoption of direct methanol fuel cells(DMFCs),it is essential to create and engineer catalyst... The electrochemical methanol oxidation is a crucial reaction in the conversion of renewable energy.To enable the widespread adoption of direct methanol fuel cells(DMFCs),it is essential to create and engineer catalysts that are both highly effective and robust for conducting the methanol oxidation reaction(MOR).In this work,trimetallic PtCoRu electrocatalysts on nitrogen-doped carbon and multi-wall carbon nanotubes(PtCoRu@NC/MWCNTs)were prepared through a two-pot synthetic strategy.The acceleration of CO oxidation to CO_(2) and the blocking of CO reduction on adjacent Pt active sites were attributed to the crucial role played by cobalt atoms in the as-prepared electrocatalysts.The precise control of Co atoms loading was achieved through precursor stoichiometry.Various physicochemical techniques were employed to analyze the morphology,element composition,and electronic state of the catalyst.Electrochemical investigations and theoretical calculations confirmed that the Pt_(1)Co_(3)Ru_(1)@NC/MWCNTs exhibit excellent electrocatalytic performance and durability for the process of MOR.The enhanced MOR activity can be attributed to the synergistic effect between the multiple elements resulting from precisely controlled Co loading content on surface of the electrocatalyst,which facilitates efficient charge transfer.This interaction between the multiple components also modifies the electronic structures of active sites,thereby promoting the conversion of intermediates and accelerating the MOR process.Thus,achieving precise control over Co loading in PtCoRu@NC/MWCNTs would enable the development of high-performance catalysts for DMFCs. 展开更多
关键词 Ternary alloys ELECTROCATALYSTS Methanol oxidation reaction Electron transfer Theoretical calculations
下载PDF
Perylene diimide self-assembly: From electronic structural modulation to photocatalytic applications 被引量:3
5
作者 Weiqin Wei Shuxin Ouyang Tierui Zhang 《Journal of Semiconductors》 EI CAS CSCD 2020年第9期99-125,共27页
As an emerging organic semiconductor,perylene diimide(PDI)self-assembly has attracted tremendous attention in the aspects of solar cells,sensors,fluorescence probes and n-transistors,etc.In term of photocatalysis,vari... As an emerging organic semiconductor,perylene diimide(PDI)self-assembly has attracted tremendous attention in the aspects of solar cells,sensors,fluorescence probes and n-transistors,etc.In term of photocatalysis,various photocatalysts based on PDI self-assembly exhibit some unique properties,such as intrinsicΠ-Πstacking structure,fast internal charge transfer,band-like electronic structure,flexible structural modifiability,well-defined morphological adjustability and excellent light absorption.This paper mainly presents recent progress on PDI self-assembly regarding how to regulate the electronic structure of PDI self-assembly.In addition,the photocatalytic applications of PDI self-assembly and its complexes were reviewed,such as environmental remedy,energy productions,organic synthesis and photodynamic/photothermal therapy,further highlighting related photocatalytic mechanisms.Finally,the review contents and some perspectives on photocatalytic research of PDI selfassembly were summarized,and some key scientific problems were put forward to direct related photocatalytic research in future. 展开更多
关键词 perylene diimide SELF-ASSEMBLY PHOTOCATALYSIS Π-Πstacking electron transfer
下载PDF
Interfacial Charge Transfer Induced Electronic Property Tuning of MoS_2 by Molecular Functionalization
6
作者 周思含 周春伟 +3 位作者 杨向东 李阳 钟建强 毛宏颖 《Chinese Physics Letters》 SCIE CAS CSCD 2021年第5期94-98,共5页
The modulation of electrical properties of MoS_2 has attracted extensive research interest because of its potential applications in electronic and optoelectronic devices.Herein,interfacial charge transfer induced elec... The modulation of electrical properties of MoS_2 has attracted extensive research interest because of its potential applications in electronic and optoelectronic devices.Herein,interfacial charge transfer induced electronic property tuning of MoS_2 are investigated by in situ ultraviolet photoelectron spectroscopy and x-ray photoelectron spectroscopy measurements.A downward band-bending of MoS_2-related electronic states along with the decreasing work function,which are induced by the electron transfer from Cs overlayers to MoS_2,is observed after the functionalization of MoS_2 with Cs,leading to n-type doping.Meanwhile,when MoS_2 is modified with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane(F_4-TCNQ),an upward band-bending of MoS_2-related electronic states along with the increasing work function is observed at the interfaces.This is attributed to the electron depletion within MoS_2 due to the strong electron withdrawing property of F_4-TCNQ,indicating p-type doping of MoS_2.Our findings reveal that surface transfer doping is an effective approach for electronic property tuning of MoS_2 and paves the way to optimize its performance in electronic and optoelectronic devices. 展开更多
关键词 Interfacial Charge Transfer Induced electronic Property Tuning of MoS_2 by Molecular Functionalization
下载PDF
Electro-enzyme coupling systems for selective reduction of CO_(2) 被引量:1
7
作者 Yuman Guo Xueming Hong +1 位作者 Ziman Chen Yongqin Lv 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期140-162,I0005,共24页
To address the energy crisis and alleviate the rising level of CO_(2)in the atmosphere,various CO_(2)capture and utilization(CCU)technologies have been developed.The use of electro-enzyme coupling systems is a promisi... To address the energy crisis and alleviate the rising level of CO_(2)in the atmosphere,various CO_(2)capture and utilization(CCU)technologies have been developed.The use of electro-enzyme coupling systems is a promising strategy for the sustainable production of fuels,chemicals and materials using CO_(2)as the feedstock.In this review,the recent progresses in the development of electro-enzyme coupling systems for the selective reduction of CO_(2)are systematically summarized.We first provide a brief background about the significance and challenges in the direct conversion of CO_(2)into value-added chemicals.Next,we describe the materials and strategies in the design of electrodes,as well as the common enzymes used in the electro-enzyme coupling systems.Then,we focus on the state-of-the-art routes for the electro-enzyme coupling conversion of CO_(2)into a variety of compounds(formate,CO,methanol,C≥2chemicals)by a single enzyme or multienzyme systems.The emerging approaches and materials used for the construction of electro-enzyme coupling systems to enhance the electron transfer efficiency and the catalytic activity/stability are highlighted.The main challenges and perspectives in the integration of enzymatic and electrochemical strategies are also discussed. 展开更多
关键词 Electro-enzyme coupling CO_(2)reduction ELECTROCHEMISTRY ENZYME Electron transfer
下载PDF
Deciphering engineering principle of three-phase interface for advanced gas-involved electrochemical reactions 被引量:1
8
作者 Yanzheng He Sisi Liu +3 位作者 Mengfan Wang Qiyang Cheng Tao Qian Chenglin Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期302-323,I0008,共23页
As an alternative to conventional energy conversion and storage reactions,gas-involved electrochemical reactions,including the carbon dioxide reduction reaction(CO_(2)RR),nitrogen reduction reaction(NRR)and hydrogen e... As an alternative to conventional energy conversion and storage reactions,gas-involved electrochemical reactions,including the carbon dioxide reduction reaction(CO_(2)RR),nitrogen reduction reaction(NRR)and hydrogen evolution reaction(HER),have become an emerging research direction and have gained increasing attention due to their advantages of environmental friendliness and sustainability.Various studies have been designed to accelerate sluggish kinetics but with limited results.Most of them promote the reaction by modulating the intrinsic properties of the catalyst,ignoring the synergistic effect of the reaction as a whole.Due to the introduction of gas,traditional liquid-solid two-phase reactions are no longer applicable to future research.Since gas-involved electrochemical reactions mostly occur at the junctions of gaseous reactants,liquid electrolytes and solid catalysts,the focus of future research on reaction kinetics should gradually shift to three-phase reaction interfaces.In this review,we briefly introduce the formation and constraints of the three-phase interface and propose three criteria to judge its merit,namely,the active site,mass diffusion and electron mass transfer.Subsequently,a series of modulation methods and relevant works are discussed in detail from the three improvement directions of‘exposing more active sites,promoting mass diffusion and accelerating electron transfer’.Definitively,we provide farsighted insights into the understanding and research of three-phase interfaces in the future and point out the possible development direction of future regulatory methods,hoping that this review can broaden the future applications of the three-phase interface,including but not limited to gas-involved electrochemical reactions. 展开更多
关键词 Three-phase reaction Surface reactions Mass diffusion Electron transfer Gas-involved electrochemical reactions
下载PDF
Coupling ferromagnetic ordering electron transfer channels and surface reconstructed active species for spintronic electrocatalysis of water oxidation 被引量:1
9
作者 Zexing He Xiaokang Liu +7 位作者 Minghui Zhang Lei Guo Muhammad Ajmal Lun Pan Chengxiang Shi Xiangwen Zhang Zhen-Feng Huang Ji-Jun Zou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期570-580,I0014,共12页
Sluggish reaction kinetics of oxygen evolution reaction(OER), resulting from multistep proton-coupled electron transfer and spin constriction, limits overall efficiency for most reported catalysts. Herein, using model... Sluggish reaction kinetics of oxygen evolution reaction(OER), resulting from multistep proton-coupled electron transfer and spin constriction, limits overall efficiency for most reported catalysts. Herein, using modeled ZnFe_(2-x)Ni_xO_(4)(0 ≤ x ≤ 0.4) spinel oxides, we aim to develop better OER electrocatalyst through combining the construction of ferromagnetic(FM) ordering channels and generation of highly active reconstructed species. The number of symmetry-breaking Fe–O–Ni structure links to the formation of FM ordering electron transfer channels. Meanwhile, as the number of Ni^(3+)increases, more ligand holes are formed, beneficial for redirecting surface reconstruction. The electro-activated ZnFe_(1.6)Ni_(0.4)O_(4) shows the highest specific activity, which is 13 and 2.5 times higher than that of ZnFe_(2)O_(4) and unactivated ZnFe_(1.6)Ni_(0.4)O_(4), and even superior to the benchmark IrO_(2) under the overpotential of 350 mV. Applying external magnetic field can make electron spin more aligned, and the activity can be further improved to 39 times of ZnFe_(2)O_(4). We propose that intriguing FM exchange-field interaction at FM/paramagnetic interfaces can penetrate FM ordering channels into reconstructed oxyhydroxide layers, thereby activating oxyhydroxide layers as spin-filter to accelerate spin-selective electron transfer. This work provides a new guideline to develop highly efficient spintronic catalysts for water oxidation and other spin-forbidden reactions. 展开更多
关键词 Oxygen evolution reaction Reconstruction mechanism Metal oxyhydroxides Electron transfer channels Ferromagnetic exchange-field penetration
下载PDF
Activation of Transition Metal(Fe,Co and Ni)-Oxide Nanoclusters by Nitrogen Defects in Carbon Nanotube for Selective CO_(2) Reduction Reaction 被引量:1
10
作者 Yi Cheng Jinfan Chen +7 位作者 Chujie Yang Huiping Wang Bernt Johannessen Lars Thomsen Martin Saunders Jianping Xiao Shize Yang San Ping Jiang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期253-263,共11页
The electrochemical carbon dioxide reduction reaction(CO_(2)RR),which can produce value-added chemical feedstocks,is a proton-coupled-electron process with sluggish kinetics.Thus,highly efficient,cheap catalysts are u... The electrochemical carbon dioxide reduction reaction(CO_(2)RR),which can produce value-added chemical feedstocks,is a proton-coupled-electron process with sluggish kinetics.Thus,highly efficient,cheap catalysts are urgently required.Transition metal oxides such as CoO_(x),FeO_(x),and NiO_(x)are low-cost,low toxicity,and abundant materials for a wide range of electrochemical reactions,but are almost inert for CO_(2)RR.Here,we report for the first time that nitrogen doped carbon nanotubes(N-CNT)have a surprising activation effect on the activity and selectivity of transition metal-oxide(MO_(x)where M=Fe,Ni,and Co)nanoclusters for CO_(2)RR.MO_(x)supported on N-CNT,MO_(x)/N-CNT,achieves a CO yield of 2.6–2.8 mmol cm−2 min−1 at an overpotential of−0.55 V,which is two orders of magnitude higher than MO_(x)supported on acid treated CNTs(MO_(x)/O-CNT)and four times higher than pristine N-CNT.The faraday efficiency for electrochemical CO_(2)-to-CO conversion is as high as 90.3%at overpotential of 0.44 V.Both in-situ XAS measurements and DFT calculations disclose that MO_(x)nanoclusters can be hydrated in CO_(2)saturated KHCO_(3),and the N defects of N-CNT effectively stabilize these metal hydroxyl species under carbon dioxide reduction reaction conditions,which can split the water molecules and provide local protons to inhibit the poisoning of active sites under carbon dioxide reduction reaction conditions. 展开更多
关键词 activation effect electrochemical CO_(2)reduction reaction N defect proton-coupled electron transfer process transition metal oxide nanocluster
下载PDF
Mechanically mixing copper and silver into self-supporting electrocatalyst for hydrogen evolution
11
作者 Xinzhuo Hu Zhe Liu +9 位作者 Yi Feng Yongfeng Zhang Zhe Li Zhennan Chen Jing Mao Jing Yang Hui Liu Pengfei Yin Lei Cui Xiwen Du 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1906-1913,共8页
Commercial hydrogen production involves the development of efficient hydrogen evolution reaction catalysts.Herein,we adopted a friction stir processing(FSP)technique to mix immiscible metals homogenously and obtain a ... Commercial hydrogen production involves the development of efficient hydrogen evolution reaction catalysts.Herein,we adopted a friction stir processing(FSP)technique to mix immiscible metals homogenously and obtain a self-supporting copper-silver(CuAg)catalyst.The gust of Ag atoms with larger atomic sizes caused a tensile strain in the Cu matrix.Meanwhile,the chemical-potential difference induced electron transfer from Cu to Ag,and the two factors jointly led to the upshift of Cu d-band and improved the catalytic activity.Consequently,the CuAg electrode exhibited a high turnover frequency(12 times that of pure Cu),a low overpotential at high current density(superior to platinum foil),and high durability(1.57%decay over 180 h).Our work demonstrates that FSP is a powerful method for preparing self-supporting catalysts of immiscible alloys with high catalytic performance. 展开更多
关键词 hydrogen evolution reaction catalyst friction stir processing STRAIN electron transfer
下载PDF
Cross-linked polyelectrolyte reinforced SnO_(2)electron transport layer for robust flexible perovskite solar cells
12
作者 Zhihao Li Zhi Wan +7 位作者 Chunmei Jia Meng Zhang Meihe Zhang Jiayi Xue Jianghua Shen Can Li Chao Zhang Zhen Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期335-342,I0010,共9页
SnO_(2)electron transport layer(ETL)is a vital component in perovskite solar cells(PSCs),due to its excellent photoelectric properties and facile fabrication process.In this study,we synthesized a water-soluble and ad... SnO_(2)electron transport layer(ETL)is a vital component in perovskite solar cells(PSCs),due to its excellent photoelectric properties and facile fabrication process.In this study,we synthesized a water-soluble and adhesive polyelectrolyte with ethanolamine(EA)and poly-acrylic acid(PAA).The linear PAA was crosslinked by EA,forming a 3D network that stabilized the SnO_(2)nanoparticle dispersion.An organic–inorganic hybrid ETL is developed by introducing the cross-linked PAA-EA into SnO_(2)ETL,which prevents nano particle agglomeration and facilitates uniform SnO_(2)film formation with fewer defects.Additionally,the PAA-EA-modified SnO_(2)facilitated a uniform and compact perovskite film,enhancing the interface contact and carrier transport.Consequently,the PAA-EA-modified PSCs exhibited excellent PCE of 24.34%and 22.88%with high reproducibility for areas of 0.045 and 1.00 cm~2,respectively.Notably,owing to structure reinforce effect of PAA-EA in SnO_(2)ETL,flexible device demonstrated an impressive PCE of 23.34%while maintaining 90.1%of the initial PCE after 10,000 bending cycles with a bending radius of 5 mm.This successful approach of polyelectrolyte reinforced hybrid organic–inorganic ETL displays great potential for flexible,large-area PSCs application. 展开更多
关键词 POLYELECTROLYTE CROSS-LINK Tin oxide Electron transfer layer Flexible solar cells
下载PDF
Promoting and controlling electron transfer of furfural oxidation efficiently harvest electricity,furoic acid,hydrogen gas and hydrogen peroxide
13
作者 Denghao Ouyang Daihong Gao +2 位作者 Jinpeng Hong Zhao Jiang Xuebing Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期135-147,共13页
Conventional chemical oxidation of aldehydes such as furfural to corresponding acids by molecular oxygen usually needs high pressure to increase the solubility of oxygen in aqueous phase,while electrochemical oxidatio... Conventional chemical oxidation of aldehydes such as furfural to corresponding acids by molecular oxygen usually needs high pressure to increase the solubility of oxygen in aqueous phase,while electrochemical oxidation needs input of external electric energy.Herein,we developed a liquid flow fuel cell(LFFC)system to achieve oxidation of furfural in anode for furoic acid production with co-production of hydrogen gas.By controlling the electron transfer in cathode for reduction of oxygen,efficient generation of electricity or production of H_(2)O_(2)were achieved.Metal oxides especially Ag_(2)O have been screened as the efficient catalyst to promote the oxidation of aldehydes,while liquid redox couples were used for promoting the kinetics of oxygen reduction.A novel alkaline-acidic asymmetric design was also used for anolyte and catholyte,respectively,to promote the efficiency of electron transfer.Such an LFFC system achieves efficient conversion of chemical energy of aldehyde oxidation to electric energy and makes full use the transferred electrons for high-value added products without input of external energy.With(VO_(2))_(2)SO_(4)as the electron carrier in catholyte for four-electron reduction of oxygen,the peak output power density(Pmax)at room temperature reached 261 mW/cm^(2)with furoic acid and H_(2)yields of 90%and 0.10 mol/mol furfural,respectively.With anthraquinone-2-sulfonate(AQS)as the cathodic electron carrier,Pmaxof 60 mW/cm^(2)and furoic acid,H_(2)and H_(2)O_(2)yields of 0.88,0.15 and 0.41 mol/mol furfural were achieved,respectively.A new reaction mechanism on furfural oxidation on Ag_(2)O anode was proposed,referring to one-electron and two-electron reaction pathways depending on the fate of adsorbed hydrogen atom transferred from furfural aldehyde group. 展开更多
关键词 Oxidation of furfural Liquid flow fuel cell Electricity generation Hydrogen production Electron transfer
下载PDF
Boosted sodium ion storage performance in MnO_(2):Understanding the bond angle-mediated orbital overlap in MnO_(6)units for fast charge transfer
14
作者 Jinrui Wang Zishan Hou +12 位作者 Xia Liu Shiyu Wang Shuyun Yao Yebo Yao Dewei Wang Xueying Gao Huiying Zhang Zheng Tang Yuanming Liu Kaiqi Nie Jiangzhou Xie Zhiyu Yang Yi-Ming Yan 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期295-303,I0008,共10页
Symmetric six oxygen-coordinated Mn structural units(MnO6)in MnO2 with small Mn–O orbital overlap hamper electron transfer rates during energy storage.Herein,we report a novel bond angle modulation strategy to manipu... Symmetric six oxygen-coordinated Mn structural units(MnO6)in MnO2 with small Mn–O orbital overlap hamper electron transfer rates during energy storage.Herein,we report a novel bond angle modulation strategy to manipulate Mn–O orbital overlap in MnO2 through the construction of Mn vacancies(MnO2-VMn),aiming at expediting electron transfer,and thus enhancing energy storage performance.Both experimental and theoretical results disclose that the amplification of Mn–O–Mn bond angles exclusively augments the Mn(dx2-y2)-O(py)orbital overlap and triggers the electron redistribution in MnO2-VMn,inducing an augmented Mn dx2-y2 electron occupation.This heightened presence of active electrons in the Mn dx2-y2 orbital paves the way for accelerating electron transfer and ion transfer in MnO2-VMn.Notably,MnO2-VMn delivers an improved specific capacitance of 425 F g−1 at 1 A g−1 and a superior rate capacity of 265 F g−1 at 20 A g−1.Furthermore,an asymmetric supercapacitor(MnO2-VMn//AC ASC)was fabricated,exhibiting a high energy density of 64.3 Wh kg−1 at a power density of 1000 W kg−1.Furthermore,theoretical insights uncover the profound implications of metal–oxygen–metal bond angle regulation on interatomic orbital overlap modulation.These revelations illuminate pathways for the design of advanced energy storage materials. 展开更多
关键词 Bond angle Orbital overlap Cation vacancies Manganese oxides Electron transfer
下载PDF
Activating coordinative conjugated polymer via interfacial electron transfer for efficient CO_(2) electroreduction
15
作者 Jing Zhang Jia-Jun Dai +13 位作者 De-Quan Cao Heng Xu Xing-Yu Ding Chun-Hua Zhen Beate Paulus Jin-Yu Ye Qian Liang Jun-Ke Liu Shi-Jun Xie Sai-Sai Deng Zhen Wang Jun-Tao Li Yao Zhou Shi-Gang Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期313-323,I0009,共12页
With tunable local electronic environment,high mass density of MN4sites,and ease of preparation,metal-organic conjugated coordinative polymer(CCP) with inherent electronic conductivity provides a promising alternative... With tunable local electronic environment,high mass density of MN4sites,and ease of preparation,metal-organic conjugated coordinative polymer(CCP) with inherent electronic conductivity provides a promising alternative to the well-known M-N-C electrocatalysts.Herein,the coordination reaction between Cu^(2+)and 1,2,4,5-tetraaminobenzene(TAB) was conducted on the surface of metallic Cu nanowires,forming a thin layer of CuN4-based CCP(Cu-TAB) on the Cu nanowire.More importantly,interfacial transfer of electrons from Cu core to the CuN4-based CCP nanoshell was observed within the resulting CuTAB@Cu,which was found to enrich the local electronic density of the CuN4sites.As such,the CuTAB@Cu demonstrates much improved affinity to the*COOH intermediate formed from the rate determining step;the energy barrier for C-C coupling,which is critical to convert CO_(2)into C2products,is also decreased.Accordingly,it delivers a current density of-9.1 mA cm^(-2)at a potential as high as 0.558 V(vs.RHE) in H-type cell and a Faraday efficiency of 46.4% for ethanol.This work emphasizes the profound role of interfacial interaction in tuning the local electronic structure and activating the CuN4-based CCPs for efficient electroreduction of CO_(2). 展开更多
关键词 Metal-organic solid compounds Conjugated coordinative polymer Solid-solid interfacial electron transfer MN_(4)sites Electrocatalysis
下载PDF
Electrochemical Biorefinery toward Chemicals Synthesis and Bio-Oil Upgrading from Lignin
16
作者 Rui Hu Yuying Zhao +5 位作者 Chen Tang Yan Shi Gang Luo Jiajun Fan James H.Clark Shicheng Zhang 《Engineering》 SCIE EI CAS CSCD 2023年第8期178-198,共21页
Recalcitrance and the inherent heterogeneity of lignin structure are the major bottlenecks to impede the popularization of lignin-based chemicals production processes.Recent works suggested a promising pathway for lig... Recalcitrance and the inherent heterogeneity of lignin structure are the major bottlenecks to impede the popularization of lignin-based chemicals production processes.Recent works suggested a promising pathway for lignin depolymerization and lignin-derived bio-oil upgrading via an electrochemical biorefinery(a process in which lignin valorization is performed via electrochemical oxidation or reduction).This review presents the progress on chemicals synthesis and bio-oil upgrading from lignin by an electrochemical biorefinery,relating to the lignin biosynthesis pathway,reaction pathway of lignin electrochemical conversion,inner-sphere and outer-sphere electron transfer mechanism,basic kinetics and thermodynamics in electrochemistry,and the recent embodiments analysis with the emphasis on the respective feature and limitation for lignin electrochemical oxidative and reductive conversion.Lastly,the challenge and perspective associated with lignin electrochemical biorefinery are discussed.Present-day results indicate that more work should be performed to promote efficiency,selectivity,and stability in pursuing a lignin electrochemical biorefinery.One of the most promising developing directions appears to be integrating various types of lignin electrochemical conversion strategies and other existing or evolving lignin valorization technologies.This review aims to provide more references and discussion on the development for lignin electrochemical biorefinery. 展开更多
关键词 LIGNIN Electrochemical biorefinery Reaction pathway Electron transfer mechanism Kinetics THERMODYNAMICS
下载PDF
Electronic regulation to achieve efficient anaerobic digestion of organic fraction of municipal solid waste(OFMSW):strategies,challenges and potential solutions
17
作者 Yongdong Chen Hong Wang +3 位作者 Parisa Ghofrani-Isfahani Li Gu Xiaoguang Liu Xiaohu Dai 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2024年第4期159-165,共7页
Anaerobic digestion(AD)of organic fraction of municipal solid waste(OFMSW)is prone to system breakdown under high organic loading rates(OLRs)condition,which subsequently reduces the efficiency of digestion process and... Anaerobic digestion(AD)of organic fraction of municipal solid waste(OFMSW)is prone to system breakdown under high organic loading rates(OLRs)condition,which subsequently reduces the efficiency of digestion process and results in substantial economic losses.In this perspective paper,the substances metabolisms,electrons flow,as well as microbial interaction mechanisms within AD process are comprehensively discussed,and the underlying bottleneck that causes inefficient methane production is identified,which is“electrons surplus”.Systems encountering severe electron surplus are at risk of process failure,making it crucial to proactively prevent this phenomenon through appropriate approaches.On this basis,the present perspective proposes three potential electronic regulation strategies to prevent electrons surplus,namely,electron shunt,accelerating electron transfer and regulating methanogenic metabolism pathway,and presents specific methodologies for each strategy.Furthermore,the potential solutions to challenges that may occur during the electronic regulation process are also presented in this paper.This perspective aims to provide innovative approaches to achieve the efficient and stable operation of OFMSW anaerobic digestion,especially under high OLRs condition. 展开更多
关键词 Anaerobic digestion Electrons surplus electronic regulation Electrons shunt Electron transfer Methanogenic metabolism pathway
原文传递
旋光法研究Co(phen)_3^(3+)同Co(Ⅱ)络合物的电子转移反应
18
作者 徐志固 俞鼎琼 +1 位作者 李君丽 吴坤华 《厦门大学学报(自然科学版)》 CAS 1988年第1期81-87,共7页
应用Mureinik和Spiro方程到通过外球电子转移的(+)D-Co(phen)_3^(3+)外消旋反应,证明了电子转移反应对Co(Ⅲ)和Co(Ⅱ)络离子的浓度是一级的,V=k_2[Co(Ⅲ)][Co(Ⅱ)].测得在水溶液中其活化能Ea为24.5kJ/mol,活化熵ΔS^+为-151J/mol·K... 应用Mureinik和Spiro方程到通过外球电子转移的(+)D-Co(phen)_3^(3+)外消旋反应,证明了电子转移反应对Co(Ⅲ)和Co(Ⅱ)络离子的浓度是一级的,V=k_2[Co(Ⅲ)][Co(Ⅱ)].测得在水溶液中其活化能Ea为24.5kJ/mol,活化熵ΔS^+为-151J/mol·K,20℃下的速度常数k_2为3.60 l/mol·S.作者还研究了水溶液中配体为H_2O、py、on、NH_3和bipy的六配位CO(Ⅱ)络离子对(+)D-Co(phen)_3^(3+)外消旋速度的影响,得出Co(Ⅱ)络离子同Co(phen)_3^(3+)的电子转移反应速度的顺序为: Co(H_2O)_6^(2+)<Co(py)_6^(2+)<Co(en)_3^(2+)<Co(NH_3)_6^(2+)<Co(phen)_3^(2+)<Co(bipy)_3^(2+) 展开更多
关键词 Electron transfer reacton Kinetics Optical racemization POLARIMETRY
下载PDF
KINETICS OF REACTION BETWEEN PbS AND PbO 被引量:12
19
作者 LI Cheng Beijing Central Design and Research Institute for Non-Ferrous Metallurgical Industry,Beijing,ChinaLIU Chunpeng,Kunming Institute of Technology,Kunming,China LI Cheng,Metallurgical Dept.No.l,Beijing Central Design and Research Institute for Non-Ferrous Metallurgical Industry,Beijing 100038,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1990年第11期293-297,共5页
The rate equation of reaction between PbS and PbO is dα/dt=kx_(PbS)~3 x_(PbO)^(-2).A transition product, PbSO_4·2PbO,is found by X-ray diffraction analysis.The reaction mechanism was dis- cussed on the basis of ... The rate equation of reaction between PbS and PbO is dα/dt=kx_(PbS)~3 x_(PbO)^(-2).A transition product, PbSO_4·2PbO,is found by X-ray diffraction analysis.The reaction mechanism was dis- cussed on the basis of electron transfer. 展开更多
关键词 KINETICS transition product electron transfer PBO PBS
下载PDF
Carbon quantum dots for advanced electrocatalysis 被引量:7
20
作者 Lin Tian Zhao Li +3 位作者 Peng Wang Xiuhui Zhai Xiang Wang Tongxiang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期279-294,共16页
Zero-dimensional(0D)carbon quantum dots(CQDs),as a nanocarbon material in the carbon family,have garnered increasing attention in recent years due to their outstanding features of low cost,nontoxicity,large surface ar... Zero-dimensional(0D)carbon quantum dots(CQDs),as a nanocarbon material in the carbon family,have garnered increasing attention in recent years due to their outstanding features of low cost,nontoxicity,large surface area,high electrical conductivity,and rich surface functional groups.By virtue of their rapid electron transfer and large surface area,CQDs also emerge as promising functional materials for the applications in energy-conversion sectors through electrocatalysis.Besides,the rich functional groups on the surface of CQDs offer abundant anchoring sites and active sites for the engineering of multicomponent and high-performance composite materials.More importantly,the heteroatom in the CQDs could effectively tailor the charge distribution to promote the electron transfer via internal interactions,which is crucial to the enhancement of electrocatalytic performance.Herein,an overview about recent progress in preparing CQDs-based composites and employing them as promising electrode materials to promote the catalytic activity and stability for electrocatalysis is provided.The introduced CQDs could enhance the conductivity,modify the morphology and crystal phase,optimize the electronic structure,and provide more active centers and defect sites of composites.After establishing a deep understanding of the relationship between CQDs and electrocatalytic performances,the issues and challenges for the development of CQDs-based composites are discussed. 展开更多
关键词 Carbon quantum dots CONDUCTIVITY Electron transfer ELECTROCATALYSIS
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部