期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Vehicle path tracking by integrated chassis control 被引量:10
1
作者 Saman Salehpour Yaghoub Pourasad Seyyed Hadi Taheri 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1378-1388,共11页
The control problem of trajectory based path following for passenger vehicles is studied. Comprehensive nonlinear vehicle model is utilized for simulation vehicle response during various maneuvers in MATLAB/Simulink. ... The control problem of trajectory based path following for passenger vehicles is studied. Comprehensive nonlinear vehicle model is utilized for simulation vehicle response during various maneuvers in MATLAB/Simulink. In order to follow desired path, a driver model is developed to enhance closed loop driver/vehicle model. Then, linear quadratic regulator(LQR) controller is developed which regulates direct yaw moment and corrective steering angle on wheels. Particle swam optimization(PSO) method is utilized to optimize the LQR controller for various dynamic conditions. Simulation results indicate that, over various maneuvers, side slip angle and lateral acceleration can be reduced by 10% and 15%, respectively, which sustain the vehicle stable. Also, anti-lock brake system is designed for longitudinal dynamics of vehicle to achieve desired slip during braking and accelerating. Proposed comprehensive controller demonstrates that vehicle steerability can increase by about 15% during severe braking by preventing wheel from locking and reducing stopping distance. 展开更多
关键词 vehicle dynamics active control system optimal controller electronic stability program(ESP) particle swam optimization(PSO)
下载PDF
Vehicle height and leveling control of electronically controlled air suspension using mixed logical dynamical approach 被引量:7
2
作者 SUN Xiao Qiang CAI Ying Feng +2 位作者 YUAN Chao Chun WANG Shao Hua CHEN Long 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第12期1814-1824,共11页
Vehicle height and leveling control of electronically controlled air suspension(ECAS) still poses theoretical challenges for researchers that have not been adequately addressed in prior research. This paper investigat... Vehicle height and leveling control of electronically controlled air suspension(ECAS) still poses theoretical challenges for researchers that have not been adequately addressed in prior research. This paper investigates the design and verification of a new controller to adjust the vehicle height and to regulate the roll and pitch angles of the vehicle body(leveling control) during the height adjustment procedures. A nonlinear mechanism model of the vehicle height adjustment system is formulated to describe the dynamic behaviors of the system. By using mixed logical dynamical(MLD) approach, a novel control strategy is proposed to adjust the vehicle height by controlling the on-off statuses of the solenoid valves directly. On this basis, a correction algorithm is also designed to regulate the durations of the on-off statuses of the solenoid valves based on pulse width modulated(PWM) technology, thus the effective leveling control of the vehicle body can be guaranteed. Finally, simulations and vehicle tests results are presented to demonstrate the effectiveness and applicability of the proposed control methodology. 展开更多
关键词 electronically controlled air suspension vehicle height control leveling control hybrid system mixed logical dynamical approach
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部