To the electronics wastewater with high salinity,the fouling propensity of effluent from the membrane bioreactor( MBR) system played an important role for the design and long-term operational sustainability of the M...To the electronics wastewater with high salinity,the fouling propensity of effluent from the membrane bioreactor( MBR) system played an important role for the design and long-term operational sustainability of the MBR + Reverse Osmosis( RO) system. In this text,the effluent quality,settling performance and membrane fouling were researched with three dimension excitation-emission fluorescence spectra( EEM) and scanning electron microscope( SEM)-Energy Dispersive Spectrometer( EDS). The results showed that there were few organics with a strong adhesion in the effluent. The metal ions in the effluent not only had a complexation reaction with the macromolecules fulvic acid and protein but also with silicon colloid. It caused a compact fouling layer on the RO membrane surface. But the organics and most of inorganic matters could form settling of flocs and be removed from the effluent by improving p H of the effluent,which would relieve the membrane fouling. In addition,the removal of metal ions in the fouling layer was critical for enhancing the cleaning efficiency of RO membrane.展开更多
The coordination structure of cupric tartrate(Cu−TA)complex was investigated by ultraviolet−visible(UV-Vis)and liquid chromatography/mass spectrometer(LC-MS)firstly;furthermore,effective coordination configurations an...The coordination structure of cupric tartrate(Cu−TA)complex was investigated by ultraviolet−visible(UV-Vis)and liquid chromatography/mass spectrometer(LC-MS)firstly;furthermore,effective coordination configurations and electronic properties of Cu−TA in aqueous solution were systematically revealed by density functional theory(DFT)calculations.Consistently,Job plots show the possible existence of[Cu(TA)]and[Cu(TA)_(2)]^(2-)at 230 and 255 nm based on UV-Vis results.LC-MS results confirm the existence of the single and high coordination complexes[Cu_(2)(TA)_(2)]^(+),[Cu(TA)_(2)]^(+)and[Cu_(2)(TA)_(3)(H_(2)O)_(2)(OH)_(2)]^(2+).DFT calculation results show that carboxylic oxygen and hydroxyl oxygen of tartaric acid(TA)are preferred sites for Cu(Ⅱ)coordination.[Cu(TA)](1H,3H sites O of TA coordinated with Cu(Ⅱ)),[Cu(TA)_(2)]^(2-)(two 1^(C),2^(H) sites O of TA coordinated with Cu(Ⅱ)),and[Cu(TA)_(3)]^(4-)(three 2H,3H sites O of TA coordinated with Cu(Ⅱ))should be dominant coordination configurations of Cu−TA.The corresponding Gibbs reaction energies are-170.1,-136.2,and-90.2 kJ/mol,respectively.展开更多
Microbial fuel cells(MFCs) have become a promising technology for wastewater treatment accompanying electricity generation. Carbon and nitrogen removal can be achieved by utilizing the electron transfer between the ...Microbial fuel cells(MFCs) have become a promising technology for wastewater treatment accompanying electricity generation. Carbon and nitrogen removal can be achieved by utilizing the electron transfer between the anode and cathode in an MFC. However,large-scale power production and high removal efficiency must be achieved at a low cost to make MFCs practical and economically competitive in the future. This article reviews the principles, feasibility and bottlenecks of MFCs for simultaneous carbon and nitrogen removal, the recent advances and prospective strategies for performance improvement, as well as the involved microbes and electron transfer mechanisms.展开更多
基金Supported by the Collaborative-innovative Project of Beijing Chaoyang District(XC1619)
文摘To the electronics wastewater with high salinity,the fouling propensity of effluent from the membrane bioreactor( MBR) system played an important role for the design and long-term operational sustainability of the MBR + Reverse Osmosis( RO) system. In this text,the effluent quality,settling performance and membrane fouling were researched with three dimension excitation-emission fluorescence spectra( EEM) and scanning electron microscope( SEM)-Energy Dispersive Spectrometer( EDS). The results showed that there were few organics with a strong adhesion in the effluent. The metal ions in the effluent not only had a complexation reaction with the macromolecules fulvic acid and protein but also with silicon colloid. It caused a compact fouling layer on the RO membrane surface. But the organics and most of inorganic matters could form settling of flocs and be removed from the effluent by improving p H of the effluent,which would relieve the membrane fouling. In addition,the removal of metal ions in the fouling layer was critical for enhancing the cleaning efficiency of RO membrane.
基金the National Key Research and Development Program of China(No.2019YFC0408303)the Natural Science Foundation of Hunan Province,China(No.2021JJ20069)+2 种基金the Changsha Science and Technology Project,China(Nos.kq2106016,kq2009005)Higher Education Discipline Innovation Project(111 Project),China(No.B14034)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2021zzts0887).
文摘The coordination structure of cupric tartrate(Cu−TA)complex was investigated by ultraviolet−visible(UV-Vis)and liquid chromatography/mass spectrometer(LC-MS)firstly;furthermore,effective coordination configurations and electronic properties of Cu−TA in aqueous solution were systematically revealed by density functional theory(DFT)calculations.Consistently,Job plots show the possible existence of[Cu(TA)]and[Cu(TA)_(2)]^(2-)at 230 and 255 nm based on UV-Vis results.LC-MS results confirm the existence of the single and high coordination complexes[Cu_(2)(TA)_(2)]^(+),[Cu(TA)_(2)]^(+)and[Cu_(2)(TA)_(3)(H_(2)O)_(2)(OH)_(2)]^(2+).DFT calculation results show that carboxylic oxygen and hydroxyl oxygen of tartaric acid(TA)are preferred sites for Cu(Ⅱ)coordination.[Cu(TA)](1H,3H sites O of TA coordinated with Cu(Ⅱ)),[Cu(TA)_(2)]^(2-)(two 1^(C),2^(H) sites O of TA coordinated with Cu(Ⅱ)),and[Cu(TA)_(3)]^(4-)(three 2H,3H sites O of TA coordinated with Cu(Ⅱ))should be dominant coordination configurations of Cu−TA.The corresponding Gibbs reaction energies are-170.1,-136.2,and-90.2 kJ/mol,respectively.
基金supported by the "Knowledge Innovation" Program of the Chinese Academy of Sciences (Nos. KZZD-EW09-3 and KSCX2-EW-B-1-5)the National Water Pollution Control and Treatment Science and Technology Major Project (No. 2015ZX07206-006)the Key Technologies R&D Program of China (No. 2014BAD14B01)
文摘Microbial fuel cells(MFCs) have become a promising technology for wastewater treatment accompanying electricity generation. Carbon and nitrogen removal can be achieved by utilizing the electron transfer between the anode and cathode in an MFC. However,large-scale power production and high removal efficiency must be achieved at a low cost to make MFCs practical and economically competitive in the future. This article reviews the principles, feasibility and bottlenecks of MFCs for simultaneous carbon and nitrogen removal, the recent advances and prospective strategies for performance improvement, as well as the involved microbes and electron transfer mechanisms.