期刊文献+
共找到166篇文章
< 1 2 9 >
每页显示 20 50 100
Room-Temperature Electroreductiveα-Alkylation of N-Heteroarenes with Styrenes
1
作者 Maorui Wang Chengqian Zhang +3 位作者 He Zhao Huanfeng Jiang Pierre HDixneuf Min Zhang 《CCS Chemistry》 CSCD 2024年第2期342-352,共11页
Despite their interesting applications,direct and diverse syntheses of aryl-fused 2-alkyl cyclic amines still remain challenging.Here,the concept of incorporating a C–C coupling process into the N-heteroaryl reductio... Despite their interesting applications,direct and diverse syntheses of aryl-fused 2-alkyl cyclic amines still remain challenging.Here,the concept of incorporating a C–C coupling process into the N-heteroaryl reduction was successfully applied to fulfill such a synthetic purpose.Due to our use of controllable electroreduction coupled with proton abstraction,we can report a room-temperature reductiveα-alkylation of the inert N-heteroarenes with abundantly available styrenes in an undivided Zn(+)/C(−)cell.This proceeds with good substrate compatibility and operational simplicity,utilizes cost-effective sacrificial Zn-anode,exhibits high selectivity,and does not need pressurized H2 gas and transition-metal catalysts.This current work offers a useful platform for direct construction of valuable aryl-fused 2-alkyl cyclic amines that are difficult to access with conventional methods. 展开更多
关键词 electroreductive C-C cross-coupling N-heteroarenes STYRENES 2-alkyl cyclic amines ALKYLATION
原文传递
Strategies of selective electroreduction of aqueous nitrate to N_(2) in chloride-free system:A critical review
2
作者 Fukuan Li Weizhe Zhang +2 位作者 Peng Zhang Ao Gong Kexun Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期198-216,共19页
Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-... Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-added ammonia from the perspective of electrocatalytic NH_(3) synthesis.By reason of the undesired formation of ammonia is dominant during electroreduction of nitrate-containing wastewater,chloride has been widely used to improve N_(2) selectivity.Nevertheless,selective electroreduction of nitrate to N2 gas in chloride-containing system poses several drawbacks.In this review,we focus on the key strategies for efficiently enhancing N_(2) selectivity of electroreduction of nitrate in chloride-free system,including optimal selection of elements,combining an active metal catalyst with another metal,manipulating the crystalline morphology and facet orientation,constructing core–shell structure catalysts,etc.Before summarizing the strategies,four possible reaction pathways of electro-reduction of nitrate to N_(2) are discussed.Overall,this review attempts to provide practical strategies for enhancing N2 selectivity without the aid of electrochlorination and highlight directions for future research for designing appropriate electrocatalyst for final electrocatalytic denitrifi-cation. 展开更多
关键词 NITRATE CHLORIDE ELECTROREDUCTION SELECTIVITY NITROGEN
下载PDF
Solid Bi_(2)O_(3)-derived nanostructured metallic bismuth with high formate selectivity for the electrocatalytic reduction of CO_(2)
3
作者 Xiaoyan Wang Safeer Jan +1 位作者 Zhiyong Wang Xianbo Jin 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期803-811,共9页
CO_(2) electrochemical reduction(CO_(2)ER)is an important research area for carbon neutralization.However,available catalysts for CO_(2) reduction are still characterized by limited stability and activity.Recently,met... CO_(2) electrochemical reduction(CO_(2)ER)is an important research area for carbon neutralization.However,available catalysts for CO_(2) reduction are still characterized by limited stability and activity.Recently,metallic bismuth(Bi)has emerged as a promising catalyst for CO_(2) ER.Herein,we report the solid cathode electroreduction of commercial micronized Bi2O3as a straightforward approach for the preparation of nanostructured Bi.At-1.1 V versus reversible hydrogen electrode in a KHCO3aqueous electrolyte,the resulting nanostructure Bi delivers a formate current density of~40 mA·cm^(-2) with a current efficiency of~86%,and the formate selectivity reaches97.6% at-0.78 V.Using nanosized Bi2O3as the precursor can further reduce the primary particle sizes of the resulting Bi,leading to a significantly increased formate selectivity at relatively low overpotentials.The high catalytic activity of nanostructured Bi is attributable to the ultrafine and interconnected Bi nanoparticles in the nanoporous structure,which exposes abundant active sites for CO_(2) electrocatalytic reduction. 展开更多
关键词 BISMUTH carbon dioxide ELECTROCATALYSIS FORMATE solid electroreduction
下载PDF
d-d Orbital coupling induced by crystal-phase engineering assists acetonitrile electroreduction to ethylamine
4
作者 Honggang Huang Yao Chen +7 位作者 Hui Fu Cun Chen Hanjun Li Zhe Zhang Feili Lai Shuxing Bai Nan Zhang Tianxi Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期216-225,I0006,共11页
The d-d orbital coupling induced by crystal-phase engineering can effectively adjust the electronic structure of electrocatalysts,thus showing significant catalytic performance,while it has been rarely explored in ele... The d-d orbital coupling induced by crystal-phase engineering can effectively adjust the electronic structure of electrocatalysts,thus showing significant catalytic performance,while it has been rarely explored in electrochemical acetonitrile reduction reaction(ARR)to date.Herein,we successfully realize the structural transformation of Pd Cu metallic aerogels(MAs)from face-centered cubic(FCC)to body-centered cubic(BCC)through annealing treatment.Specifically,the BCC Pd Cu MAs exhibit excellent ARR performance with high ethylamine selectivity of 90.91%,Faradaic efficiency of 88.60%,yield rate of 316.0 mmol h^(-1)g^(-1)_(Pd+Cu)and long-term stability for consecutive electrolysis within 20 h at-0.55 V vs.reversible hydrogen electrode,outperforming than those of FCC Pd Cu MAs.Under the membrane electrode assembly system,BCC Pd Cu MAs also demonstrate excellent ethylamine yield rate of 389.5 mmol h^(-1)g^(-1)_(Pd+Cu).Density functional theory calculation reveals that the d-d orbital coupling in BCC Pd Cu MAs results in an evident correlation effect for the interaction of Pd and Cu sites,which boosts up the Cu sites electronic activities to enhance ARR performance.Our work opens a new route to develop efficient ARR electrocatalysts from the perspective of crystalline structure transformation. 展开更多
关键词 d-d Orbital coupling Crystal-phase engineering Metallic aerogels Acetonitrile electroreduction reaction ETHYLAMINE
下载PDF
Kinetic-boosted CO_(2) electroreduction to formate via synergistic electric-thermal field on hierarchical bismuth with amorphous layer
5
作者 Bing Yang Junyi Zeng +4 位作者 Zhenlin Zhang Lin Meng Donglin Shi Liang Chen Youju Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期233-243,I0007,共12页
Electrocatalytic converting CO_(2) into chemical products has emerged as a promising approach to achieving carbon neutrality.Herein,we report a bismuth-based catalyst with high curvature terminal and amorphous layer w... Electrocatalytic converting CO_(2) into chemical products has emerged as a promising approach to achieving carbon neutrality.Herein,we report a bismuth-based catalyst with high curvature terminal and amorphous layer which fabricated via two-step electrodeposition achieves stable formate output in a wide voltage window of 600 mV.The Faraday efficiency(FE) of formate reached up to 99.4% at-0.8 V vs.RHE and it remained constant for more than 92 h at-15 mA cm^(-2).More intriguingly,FE formate of95.4% can be realized at a current density of industrial grade(-667.7 mA cm^(-2)) in flow cell.The special structure promoted CO_(2) adsorption and reduced its activation energy and enhanced the electric-thermal field and K^(+) enrichment which accelerated the reaction kinetics.In situ spectroscopy and theoretical calculation further confirmed that the introduction of amorphous structure is beneficial to adsorpting CO_(2)and stabling*OCHO intermediate.This work provides special insights to fabricate efficient electrocatalysts by means of structural and crystal engineering and makes efforts to realize the industrialization of bismuth-based catalysts. 展开更多
关键词 CO_(2) electroreduction Hierarchical bismuth Amorphous layer Electric-thermal field Kinetic-boosting
下载PDF
Enhancing Green Ammonia Electrosynthesis Through Tuning Sn Vacancies in Sn‑Based MXene/ MAX Hybrids
6
作者 Xinyu Dai Zhen‑Yi Du +10 位作者 Ying Sun Ping Chen Xiaoguang Duan Junjun Zhang Hui Li Yang Fu Baohua Jia Lei Zhang Wenhui Fang Jieshan Qiu Tianyi Ma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期154-168,共15页
Renewable energy driven N_(2) electroreduction with air as nitrogen source holds great promise for realizing scalable green ammonia production.However,relevant out-lab research is still in its infancy.Herein,a novel S... Renewable energy driven N_(2) electroreduction with air as nitrogen source holds great promise for realizing scalable green ammonia production.However,relevant out-lab research is still in its infancy.Herein,a novel Sn-based MXene/MAX hybrid with abundant Sn vacancies,Sn@Ti_(2)CTX/Ti_(2)SnC–V,was synthesized by controlled etching Sn@Ti_(2)SnC MAX phase and demonstrated as an efficient electrocatalyst for electrocatalytic N2 reduction.Due to the synergistic effect of MXene/MAX heterostructure,the existence of Sn vacancies and the highly dispersed Sn active sites,the obtained Sn@Ti2CTX/Ti_(2)SnC–V exhibits an optimal NH_(3) yield of 28.4μg h^(−1) mg_(cat)^(−1) with an excellent FE of 15.57% at−0.4 V versus reversible hydrogen electrode in 0.1 M Na_(2)SO_(4),as well as an ultra-long durability.Noticeably,this catalyst represents a satisfactory NH3 yield rate of 10.53μg h^(−1) mg^(−1) in the home-made simulation device,where commercial electrochemical photovoltaic cell was employed as power source,air and ultrapure water as feed stock.The as-proposed strategy represents great potential toward ammonia production in terms of financial cost according to the systematic technical economic analysis.This work is of significance for large-scale green ammonia production. 展开更多
关键词 Green ammonia synthesis N2 electroreduction Renewable energy SN MXene/MAX hybrid
下载PDF
Electrocatalytic CO_(2) reduction to C_(2)H_(4): From lab to fab
7
作者 Zeyu Guo Fabao Yang +10 位作者 Xiaotong Li Huiwen Zhu Hainam Do Kam Loon Fow Jonathan D.Hirst Tao Wu Qiulin Ye Yaqi Peng Hao Bin Wu Angjian Wu Mengxia Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期540-564,I0012,共26页
The global concerns of energy crisis and climate change,primarily caused by carbon dioxide(CO_(2)),are of utmost importance.Recently,the electrocatalytic CO_(2) reduction reaction(CO_(2)RR) to high value-added multi-c... The global concerns of energy crisis and climate change,primarily caused by carbon dioxide(CO_(2)),are of utmost importance.Recently,the electrocatalytic CO_(2) reduction reaction(CO_(2)RR) to high value-added multi-carbon(C_(2+)) products driven by renewable electricity has emerged as a highly promising solution to alleviate energy shortages and achieve carbon neutrality.Among these C_(2+) products,ethylene(C_(2)H_(4))holds particular importance in the petrochemical industry.Accordingly,this review aims to establish a connection between the fundamentals of electrocatalytic CO_(2) reduction reaction to ethylene(CO_(2)RRto-C_(2)H_(4)) in laboratory-scale research(lab) and its potential applications in industrial-level fabrication(fab).The review begins by summarizing the fundamental aspects,including the design strategies of high-performance Cu-based electrocatalysts and advanced electrolyzer devices.Subsequently,innovative and value-added techniques are presented to address the inherent challenges encountered during the implementations of CO_(2)RR-to-C_(2)H_(4) in industrial scenarios.Additionally,case studies of the technoeconomic analysis of the CO_(2)RR-to-C_(2)H_(4) process are discussed,taking into factors such as costeffectiveness,scalability,and market potential.The review concludes by outlining the perspectives and challenges associated with scaling up the CO_(2)RR-to-C_(2)H_(4) process.The insights presented in this review are expected to make a valuable contribution in advancing the CO_(2)RR-to-C_(2)H_(4) process from lab to fab. 展开更多
关键词 CO_(2) electroreduction reaction ETHYLENE Gas diffusion electrode Machine learning Density functional theory Techno-economic analysis
下载PDF
Tackling the proton limit under industrial electrochemical CO_(2)reduction by a local proton shuttle
8
作者 Tianye Shao Kang Yang +4 位作者 Sheng Chen Min Zheng Ying Zhang Qiang Li Jingjing Duan 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期233-243,共11页
Industrial CO_(2)electroreduction has received tremendous attentions for resolution of the current energy and environmental crisis,but its performance is greatly limited by mass transport at high current density.In th... Industrial CO_(2)electroreduction has received tremendous attentions for resolution of the current energy and environmental crisis,but its performance is greatly limited by mass transport at high current density.In this work,an ion‐polymer‐modified gas‐diffusion electrode is used to tackle this proton limit.It is found that gas diffusion electrode‐Nafion shows an impressive performance of 75.2%Faradaic efficiency in multicarbon products at an industrial current density of 1.16 A/cm^(2).Significantly,in‐depth electrochemical characterizations combined with in situ Raman have been used to determine the full workflow of protons,and it is found that HCO_(3)^(−)acts as a proton pool near the reaction environment,and HCO_(3)^(−)and H_(3)O^(+)are local proton donors that interact with the proton shuttle−SO_(3)^(−)from Nafion.With rich proton hopping sites that decrease the activation energy,a“Grotthuss”mechanism for proton transport in the above system has been identified rather than the“Vehicle”mechanism with a higher energy barrier.Therefore,this work could be very useful in terms of the achievement of industrial CO_(2)reduction fundamentally and practically. 展开更多
关键词 industrial CO_(2)electroreduction proton donor proton pool proton shuttle proton transport mechanism
下载PDF
In-situ constructing Cu_(1)Bi_(1)bimetallic catalyst to promote the electroreduction of CO_(2)to formate by synergistic electronic and geometric effects 被引量:2
9
作者 Houan Ren Xiaoyu Wang +5 位作者 Xiaomei Zhou Teng Wang Yuping Liu Cai Wang Qingxin Guan Wei Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期263-271,共9页
Electrochemical CO_(2)reduction to formate is a potential approach to achieving global carbon neutrality.Here,Cu1Bi1bimetallic catalyst was prepared by a co-precipitation method.It has a ginger like composite structur... Electrochemical CO_(2)reduction to formate is a potential approach to achieving global carbon neutrality.Here,Cu1Bi1bimetallic catalyst was prepared by a co-precipitation method.It has a ginger like composite structure(CuO/CuBi_(2)O_(4))and exhibited a high formate faradaic efficiency of 98.07%at–0.98 V and a large current density of–56.12 mA.cm^(-2)at–1.28 V,which is twice as high as Bi2O3catalyst.Especially,high selectivity(FE^(–)_(HCOO)>85%)is maintained over a wide potential window of 500 mV.In-situ Raman measurements and structure characterization revealed that the reduced Cu1Bi1bimetallic catalyst possesses abundant Cu-Bi interfaces and residual Bi-O structures.The abundant Cu-Bi interface structures on the catalyst surface can provide abundant active sites for CO_(2)RR,while the Bi-O structures may stabilize the CO_(2)^(*–)intermediate.The synergistic effect of abundant Cu-Bi interfaces and Bi-O species promotes the efficient synthesis of formate by following the OCHO^(*)pathway. 展开更多
关键词 CO_(2)electroreduction Bimetallic catalyst FORMATE Cu-Bi interfaces Bi-O structure
下载PDF
Phthalocyanine-derived catalysts decorated by metallic nanoclusters for enhanced CO_(2)electroreduction 被引量:1
10
作者 Jiacheng Chen Jiayu Li +2 位作者 Jing Xu Minghui Zhu Yi-Fan Han 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期444-451,共8页
Electrochemical CO_(2)reduction(CO_(2)RR)over molecular catalysts is a paramount approach for CO_(2)conversion to CO.Herein,we report a novel phthalocyanine-derived catalyst synthesized by a two-step method with a muc... Electrochemical CO_(2)reduction(CO_(2)RR)over molecular catalysts is a paramount approach for CO_(2)conversion to CO.Herein,we report a novel phthalocyanine-derived catalyst synthesized by a two-step method with a much improved electroconductivity.Furthermore,the catalyst contains both Ni-N4sites and highly dispersed metallic Ni nanoclusters,leading to an increased CO_(2)RR currents by two folds.Isotope labelling study and in situ spectroscopic analysis demonstrate that the existence of metallic Ni nanoclusters is the key factor for the activity enhancement and can shift the CO_(2)RR mechanism from being electron transfer(ET)-limited(forming*COO^(-))to concerted proton-electron transfer(CPET)-limited(forming CO). 展开更多
关键词 Carbon dioxide ELECTROREDUCTION Hybrid catalyst Nickel-based catalysts Mechanism
下载PDF
A hierarchically structured tin-cobalt composite with an enhanced electronic effect for high-performance CO_(2) electroreduction in a wide potential range 被引量:1
11
作者 Xingxing Jiang Xuan Li +5 位作者 Yan Kong Chen Deng Xiaojie Li Qi Hu Hengpan Yang Chuanxin He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期462-469,I0012,共9页
Earth-abundant and nontoxic Sn-based materials have been regarded as promising catalysts for the electrochemical conversion of CO_(2)to C1 products,e.g.,CO and formate.However,it is still difficult for Snbased materia... Earth-abundant and nontoxic Sn-based materials have been regarded as promising catalysts for the electrochemical conversion of CO_(2)to C1 products,e.g.,CO and formate.However,it is still difficult for Snbased materials to obtain satisfactory performance at low-to-moderate overpotentials.Herein,a simple and facile electrospinning technique is utilized to prepare a composite of a bimetallic Sn-Co oxide/carbon matrix with a hollow nanotube structure(Sn Co-HNT).Sn Co-HNT can maintain>90%faradaic efficiencies for C1 products within a wide potential range from-0.6 VRHE to-1.2 VRHE,and a highest 94.1%selectivity towards CO in an H-type cell.Moreover,a 91.2%faradaic efficiency with a 241.3 m A cm^(-2)partial current density for C1 products could be achieved using a flow cell.According to theoretical calculations,the fusing of Sn/Co oxides on the carbon matrix accelerates electron transfer at the atomic level,causing electron deficiency of Sn centers and reversible variation between Co^(2+)and Co^(3+)centers.The synergistic effect of the Sn/Co composition improves the electron affinity of the catalyst surface,which is conducive to the adsorption and stabilization of key intermediates and eventually increases the catalytic activity in CO_(2)electroreduction.This study could provide a new strategy for the construction of oxide-derived catalysts for CO_(2)electroreduction. 展开更多
关键词 Hierarchic structure Tin-cobalt bimetallic oxide Electronic effect CO_(2)electroreduction Wide potential range
下载PDF
Imidazolium group prompted alkaline anion-exchange membrane with high performance for efficient electrochemical CO_(2) conversion 被引量:1
12
作者 Min Wang Qianqian Zou +5 位作者 Xueqi Dong Nengneng Xu Rong Shao Jianfei Ding Yidong Zhang Jinli Qiao 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期893-903,共11页
Development of high-performance hydroxide-conductive membranes is a focus research subject owing to promising applications in electrochemical reduction of CO_(2)(eCO_(2)RR).However,few satisfactory membranes have been... Development of high-performance hydroxide-conductive membranes is a focus research subject owing to promising applications in electrochemical reduction of CO_(2)(eCO_(2)RR).However,few satisfactory membranes have been developed to maximize the performance of CO_(2) electrolyzers,despite its role as the core in regulating ion transport and preventing product crossover or fuel loss.Herein,we report the synthesis of alkaline anion-exchange membranes fabricated by poly(vinyl-alcohol)(PVA)and poly[(3-methyl-1-vinylimidazoliummethylsulfate)-co-(1-vinylpyrrolidone)](PQ44)for use in CO_(2) electrolysis.Owing to the unique imidazolium ring structure coupled with a three-dimensional semiinterpenetrating porous internal architecture,the PVA/PQ44-OH-membranes provide a high hydroxide conductivity(21.47 mS cm^(-1)),preferable mechanical property and thermal stability.In particular,the eCO_(2)RR used PVA/PQ44-OH^(-) as electrolyte membrane realized a charming Faradaic efficiency(88%)and partial current density(29 mA cm^(-2))at0.96 VRHE and,delivered the excellent durability over 20 h electrolysis in 0.5 mol L^(-1) KHCO_(3) electrolyte.Notably,it can even enable an ultrahigh current density beyond 100 mA cm^(-2) at^(-1).11 VRHE when the electrolyte was KOH instead,and produced the FEHCOOof 85%at a low potential of0.81 VRHE,superior to both commercial alkaline A201 and acidic Nafion117 membrane. 展开更多
关键词 Alkaline anion-exchange membrane Imidazolium ring structure Semi-interpenetrating network CO_(2)electroreduction Formate production
下载PDF
Switching CO_(2) Electroreduction Selectivity Between C_(1) and C_(2) Hydrocarbons on Cu Gas-Diffusion Electrodes 被引量:1
13
作者 Jianfang Zhang Zhengyuan Li +6 位作者 Rui Cai Tianyu Zhang Shize Yang Lu Ma Yan Wang Yucheng Wu Jingjie Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期17-25,共9页
Regulating the selectivity toward a target hydrocarbon product is still the focus of CO_(2)electroreduction.Here,we discover that the original surface Cu species in Cu gas-diffusion electrodes plays a more important r... Regulating the selectivity toward a target hydrocarbon product is still the focus of CO_(2)electroreduction.Here,we discover that the original surface Cu species in Cu gas-diffusion electrodes plays a more important role than the surface roughness,local pH,and facet in governing the selectivity toward C_(1)or C_(2)hydrocarbons.The selectivity toward C_(2)H_(4) progressively increases,while CH_(4) decreases steadily upon lowering the Cu oxidation species fraction.At a relatively low electrodeposition voltage of 1.5 V,the Cu gas-diffusion electrode with the highest Cu^(δ+)/Cu^(0)ratio favors the pathways of∗CO hydrogenation to form CH_(4) with maximum Faradaic efficiency of 65.4%and partial current density of 228 mA cm^(−2)at−0.83 V vs RHE.At 2.0 V,the Cu gas-diffusion electrode with the lowest Cu^(δ+)/Cu^(0)ratio prefers C-C coupling to form C_(2)+products with Faradaic efficiency topping 80.1%at−0.75 V vs RHE,where the Faradaic efficiency of C_(2)H_(4) accounts for 46.4%and the partial current density of C_(2)H_(4) achieves 279 mA cm^(−2).This work demonstrates that the selectivity from CH_(4) to C_(2)H_(4) is switchable by tuning surface Cu species composition of Cu gas-diffusion electrodes. 展开更多
关键词 C_(2)H_(4) CH_(4) CO_(2)electroreduction ELECTRODEPOSITION switchable selectivity
下载PDF
Controllable NO Release for Catheter Antibacteria from Nitrite Electroreduction over the Cu-MOF
14
作者 Yibo Wang Yutian Qin +4 位作者 Wei Li Yuting Wang Lina Zhu Meiting Zhao Yifu Yu 《Transactions of Tianjin University》 EI CAS 2023年第4期275-283,共9页
Implant-associated infections caused by biomedical catheters severely threaten patients'health.The use of electrochemical control on NO release from benign nitrite equipped in the catheter can potentially resolve ... Implant-associated infections caused by biomedical catheters severely threaten patients'health.The use of electrochemical control on NO release from benign nitrite equipped in the catheter can potentially resolve this issue with excellent biocompatibility.Inspired by nitrite reductase,a Cu-BDC(BDC:benzene-1,4-dicarboxylic acid)catalyst with coordinated Cu(Ⅱ)sites was constructed as a heterogeneous electrocatalyst to control nitrite reduction to nitric oxide for catheter antibacteria.The combined results of in situ and ex situ tests unveil the key function of interconversion between Cu(Ⅱ)and Cu(Ⅰ)species in NO_(2)^(-)reduction to NO.After being incorporated into the actual catheter,the Cu-BDC catalyst exhibits high electrocatalytic activity toward NO_(2)^(-)reduction to NO and excellent antibacteria efficacy with a sterilizing rate of 99.9%,paving the way for the development of advanced metal-organic frameworks(MOFs)electrocatalysts for catheter antibacteria. 展开更多
关键词 Heterogeneous electrocatalysis Nitrite electroreduction NO-releasing catheter Antibacterial MOF material
下载PDF
Amorphous Sn(HPO_(4))_(2)-derived phosphorus-modified Sn/SnO_(x) core/shell catalyst for efficient CO_(2) electroreduction to formate
15
作者 Chunfeng Cheng Tianfu Liu +7 位作者 Yi Wang Pengfei Wei Jiaqi Sang Jiaqi Shao Yanpeng Song Yipeng Zang Dunfeng Gao Guoxiong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期125-131,I0005,共8页
Simultaneously achieving high activity,selectivity and stability for electrochemical CO_(2)reduction reaction(CO_(2)RR)remains great challenges.Herein,a phosphorus-modified Sn/Sn Oxcore/shell(P-Sn/SnO_x)catalyst,deriv... Simultaneously achieving high activity,selectivity and stability for electrochemical CO_(2)reduction reaction(CO_(2)RR)remains great challenges.Herein,a phosphorus-modified Sn/Sn Oxcore/shell(P-Sn/SnO_x)catalyst,derived from in situ electrochemical reduction of an amorphous Sn(HPO_(4))_(2) pre-catalyst,exhibits high CO_(2)RR performance.The total Faradaic efficiency(FE)of C_(1) products is close to 100%in a broad potential range from-0.49 to-1.02 V vs.reversible hydrogen electrode,and a total current density of 315.0 m A cm^(-2)is achieved.Moreover,the P-Sn/SnO_(x) catalyst maintains a formate FE of~90%for 120 h.Density functional theory calculations suggest that the phosphorus-modified Sn/SnO_(x) core/shell structure effectively facilitates formate production by enhancing CO_(2)adsorption and improving free energy profile of formate formation. 展开更多
关键词 CO_(2)electroreduction Structural evolution Reaction intermediate Phosphorus modification Stability
下载PDF
Nitrogen cold plasma treatment stabilizes Cu^(0)/Cu^(+) electrocatalysts to enhance CO_(2) to C2 conversion
16
作者 Qiang Zhang Jianlin Wang +5 位作者 Fang Guo Ge He Xiaohui Yang Wei Li Junqiang Xu Zongyou Yin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期321-328,共8页
Cu-based materials are ideal catalysts for CO_(2) electrocatalytic reduction reaction(CO_(2)RR) into multicarbon products.However,such reactions require stringent conditions on local environments of catalyst surfaces,... Cu-based materials are ideal catalysts for CO_(2) electrocatalytic reduction reaction(CO_(2)RR) into multicarbon products.However,such reactions require stringent conditions on local environments of catalyst surfaces,which currently are the global pressing challenges.Here,a stabilized activation of Cu^(0)/Cu^(+)-onAg interface by N_(2) cold plasma treatment was developed for improving Faradaic efficiency(FE) of CO_(2)RR into C2 products.The resultant Ag@Cu-CuN_x exhibits a C2 FE of 72% with a partial current density of-14.9 mA cm^(-2) at-1.0 V vs.RHE(reversible hydrogen electrode).Combining density functional theory(DFT) and experimental investigations,we unveiled that Cu^(0)/Cu^(+) species can be co ntrollably tu ned by the incorporation of nitrogen to form CuN_x on Ag surface,i.e.,Ag@Cu-CuN_x.This strategy enhances ^(*)CO intermediates generation and accelerates C-C coupling both thermodynamically and kinetically.The intermediates O^(*)C^(*)CO,^(*)COOH,and ^(*)CO were detected by in-situ attenuated total internal reflection surface enhanced infrared absorption spectroscopy(ATR-SEIRAS).The uncovered CO_(2)RR-into-C2 products were carried out along CO_(2)→^(*)COOH→^(*)CO→O^(*)C^(*)CO→^(*)C_(2)H_(3)O→^(*)C_(2)H_(4)O→ C_(2)H_(5)OH(or ^(*)C_(2)H_(3)O→^(*)O+C_(2)H_(4)) paths over Ag@Cu-CuN_x electrocatalyst.This work provides a new approach to design Cu-based electrocatalysts with high-efficiency,mild condition,and stable CO_(2)RR to C2 products. 展开更多
关键词 Nitrogen cold plasma Cu-based metal nitride Carbon dioxide electroreduction C2 products Stabilizes
下载PDF
Boosting C–C coupling to multicarbon products via high-pressure CO electroreduction
17
作者 Wenqiang Yang Huan Liu +5 位作者 Yutai Qi Yifan Li Yi Cui Liang Yu Xiaoju Cui Dehui Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期102-107,I0005,共7页
Electrochemical CO reduction reaction(CORR) provides a promising approach for producing valuable multicarbon products(C_(2+)), while the low solubility of CO in aqueous solution and high energy barrier of C–C couplin... Electrochemical CO reduction reaction(CORR) provides a promising approach for producing valuable multicarbon products(C_(2+)), while the low solubility of CO in aqueous solution and high energy barrier of C–C coupling as well as the competing hydrogen evolution reaction(HER) largely limit the efficiency for C_(2+)production in CORR. Here we report an overturn on the Faradaic efficiency of CORR from being HER-dominant to C_(2+)formation-dominant over a wide potential window, accompanied by a significant activity enhancement over a Moss-like Cu catalyst via pressuring CO. With the CO pressure rising from 1 to 40 atm, the C_(2+)Faradaic efficiency and partial current density remarkably increase from 22.8%and 18.9 mA cm^(-2)to 89.7% and 116.7 mA cm^(-2), respectively. Experimental and theoretical investigations reveal that high pressure-induced high CO coverage on metallic Cu surface weakens the Cu–C bond via reducing electron transfer from Cu to adsorbed CO and restrains hydrogen adsorption, which significantly facilitates the C–C coupling while suppressing HER on the predominant Cu(111) surface, thereby boosting the CO electroreduction to C_(2+)activity. 展开更多
关键词 CO electroreduction High pressure electrochemistry Cu catalyst C–C coupling Multicarbon products
下载PDF
The role of morphology on the electrochemical CO_(2) reduction performance of transition metal-based catalysts
18
作者 Umar Mustapha Chidera C.Nnadiekwe +7 位作者 Maria Abdulkarim Alhaboudal Umar Yunusa Abdulhakam Shafiu Abdullahi Ismail Abdulazeez Ijaz Hussain Saheed A.Ganiyu Abdulaziz A.Al-Saadi Khalid Alhooshani 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期198-219,I0007,共23页
The continued increase in population and the industrial revolution have led to an increase in atmospheric carbon dioxide(CO_(2)) concentration. Consequently, developing and implementing effective solutions to reduce C... The continued increase in population and the industrial revolution have led to an increase in atmospheric carbon dioxide(CO_(2)) concentration. Consequently, developing and implementing effective solutions to reduce CO_(2) emissions is a global priority. The electrochemical CO_(2) reduction reaction(CO_(2)RR) is strongly believed to be a promising alternative to fossil fuel-based technologies for the production of value-added chemicals. So far, the implementation of CO_(2)RR is hindered by associated electrochemical reactions, such as low selectivity, hydrogen evolution reaction(HER), and additional overpotential induced in some cases. As a result, it is necessary to conduct a timely evaluation of the state-of-the-art strategies in CO_(2)RR, with a focus on the engineering of the electrocatalytic systems. Catalyst morphology is one factor that plays a critical role in overcoming these drawbacks and significantly contributes to enhancing product selectivity and Faradaic efficiency(FE). This review article summarizes the recent advances in the rational design of electrocatalysts with various morphologies and the influence of these morphologies on CO_(2)RR. To compare literature findings in a meaningful way, the article focuses on results reported under a well-defined period and considers the first three rows of the d-block metal catalysts. The discussion typically covers the design of nanostructured catalysts and the molecular-level understanding of morphology-performance relationship in terms of activity, selectivity, and stability during CO_(2) electrolysis. Among others, it would be convenient to recommend a comprehensive discussion on the morphologies of single metals and heterostructures, with a detailed emphasis on their impact on CO_(2) conversion. 展开更多
关键词 CO_(2)electroreduction Electrochemical reduction of CO_(2) MORPHOLOGY CATALYSTS d-block metals catalysts Faradaic efficiency Selectivity
下载PDF
Recent progress and challenges in structural construction strategy of metal-based catalysts for nitrate electroreduction to ammonia
19
作者 Shuai Niu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期69-83,I0003,共16页
Ammonia plays an essential role in human production and life as a raw material for chemical fertilizers.The nitrate electroreduction to ammonia reaction(NO_(3)RR)has garnered attention due to its advantages over the H... Ammonia plays an essential role in human production and life as a raw material for chemical fertilizers.The nitrate electroreduction to ammonia reaction(NO_(3)RR)has garnered attention due to its advantages over the Haber-Bosch process and electrochemical nitrogen reduction reaction.Therefore,it represents a promising approach to safeguard the ecological environment by enabling the cycling of nitrogen species.This review begins by discussing the theoretical insights of the NO_(3)RR.It then summarizes recent advances in catalyst design and construction strategies,including alloying,structure engineering,surface engineering,and heterostructure engineering.Finally,the challenges and prospects in this field are presented.This review aims to guide for enhancing the efficiency of electrocatalysts in the NO_(3)RR,and offers insights for converting NO_(3)-to NH_(3). 展开更多
关键词 Nitrate electroreduction to ammonia reaction(NO^(3)RR) Structural construction strategy Nitrogen cycle Metal-based catalysts Catalytic mechanism
下载PDF
Accelerating net-zero carbon emissions by electrochemical reduction of carbon dioxide
20
作者 Fan He Sirui Tong +4 位作者 Zhouyang Luo Haoran Ding Ziye Cheng Chenxi Li Zhifu Qi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期398-409,共12页
Electroreduction of CO_(2)shows great potential for global CO_(2)utilization and uptake when collaborated with renewable electricity.Recent advances have been achieved in fundamental understanding and electrocatalyst ... Electroreduction of CO_(2)shows great potential for global CO_(2)utilization and uptake when collaborated with renewable electricity.Recent advances have been achieved in fundamental understanding and electrocatalyst development for CO_(2)electroreduction.We think this research area has progressed to the stage where significant efforts can focus on translating the obtained knowledge to the development of largescale electrolyzers,which have the potential to accelerate the transition of the current energy system into a sustainable and zero-carbon emission energy structure.In this perspective paper,we first critically evaluate the advancement of vapor-feed devices that use CO_(2)as reactants,from the point of view of industry applications.Then,by carefully comparing their performance to the state-of-the-art water electrolyzers which are well-established technology providing realistic performance targets,we looped back and discussed the remaining challenges including electrode catalysts,reaction conditions,mass transporting,membrane,device durability,operation mode,and so on.Finally,we provide perspectives on the challenges and suggest opportunities for generating fundamental knowledge and achieving technological progress toward the development of practical CO_(2)electrolyzers for the goal of building lowcarbon or/and net carbon-free economies. 展开更多
关键词 CO_(2)emission Energy storage CO_(2)electroreduction CO_(2)electrolyzer Scale up
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部