Experiment was carried out after the process parameters were calculated by the model previously established. The relationship between interdendritic spacing and local solidification time (LST) mainly determined by p...Experiment was carried out after the process parameters were calculated by the model previously established. The relationship between interdendritic spacing and local solidification time (LST) mainly determined by process parameters was exposed. Furthermore, the extent of segregation was studied. The results indicate that LST and interdendritic spacing are the largest and the amount of Laves phase as a result of the niobium segregation is the highest in the center of the ingot, whereas the opposite results are obtained at the edge of ingot. The extent of element segregation and the amount of Laves phase can be reduced when appropriate parameters are used. Therefore, the duration of subsequent homogenization treatments for 718 is shortened and the alloy quality is improved.展开更多
SEM and Field emitting TEM-EDAX were used to investigate the fracture surface of series impact specimens and the grain boundary chemistries of VIM(vacuum-inductionmelted) Fe-38 Mn austenitic alloy before and after ESR...SEM and Field emitting TEM-EDAX were used to investigate the fracture surface of series impact specimens and the grain boundary chemistries of VIM(vacuum-inductionmelted) Fe-38 Mn austenitic alloy before and after ESR(electroslag remelting,).The quantity and the size of inclusions were also examined.The results show that the VIM Fe-38 Mn austenitinic alloy water-quenched from 1 100 C undergoes an obvious ductile-to-brittle transition,and the impact work at ambient temperature is 242 J,the corresponding fracture surface exhibits a dimple character.However,the impact work at 77 K of VIM alloy is only 25 J and the fracture mode is IGF(intergranular fracture).After ESR,the impact work at ambient temperature is 320 J and the fracture surface exhibits a character of "volcano lava"(meaning excellent toughness);The impact work at 77 K is up to 300 J and the fracture mode is micro void coalescence mixed with quasi-cleavage.The segregation of Mn is not found in all specimens,but the segregation of S is observed,and the S segregation is decreased after ESR.The examined results of inclusions show that ESR reduces the quantity and improves the morphology of inclusions.From the above results it can be seen that the cryogenic IGF of VIM Fe-38 Mn austenitic alloy is related to the S segregation at grain boundary.After ESR the decrease in the quantity and size of inclusion results in the increase of the impact work at ambient temperature,while the restriction of IGF is related to the decrease in the total level,and hence in the grain boundary segregation of S.展开更多
基金Item Sponsored by Weaponry Pre-Research Fund (51412020304QT0901)
文摘Experiment was carried out after the process parameters were calculated by the model previously established. The relationship between interdendritic spacing and local solidification time (LST) mainly determined by process parameters was exposed. Furthermore, the extent of segregation was studied. The results indicate that LST and interdendritic spacing are the largest and the amount of Laves phase as a result of the niobium segregation is the highest in the center of the ingot, whereas the opposite results are obtained at the edge of ingot. The extent of element segregation and the amount of Laves phase can be reduced when appropriate parameters are used. Therefore, the duration of subsequent homogenization treatments for 718 is shortened and the alloy quality is improved.
基金Project Sponsored by National Natural Science Foundation(59771001)
文摘SEM and Field emitting TEM-EDAX were used to investigate the fracture surface of series impact specimens and the grain boundary chemistries of VIM(vacuum-inductionmelted) Fe-38 Mn austenitic alloy before and after ESR(electroslag remelting,).The quantity and the size of inclusions were also examined.The results show that the VIM Fe-38 Mn austenitinic alloy water-quenched from 1 100 C undergoes an obvious ductile-to-brittle transition,and the impact work at ambient temperature is 242 J,the corresponding fracture surface exhibits a dimple character.However,the impact work at 77 K of VIM alloy is only 25 J and the fracture mode is IGF(intergranular fracture).After ESR,the impact work at ambient temperature is 320 J and the fracture surface exhibits a character of "volcano lava"(meaning excellent toughness);The impact work at 77 K is up to 300 J and the fracture mode is micro void coalescence mixed with quasi-cleavage.The segregation of Mn is not found in all specimens,but the segregation of S is observed,and the S segregation is decreased after ESR.The examined results of inclusions show that ESR reduces the quantity and improves the morphology of inclusions.From the above results it can be seen that the cryogenic IGF of VIM Fe-38 Mn austenitic alloy is related to the S segregation at grain boundary.After ESR the decrease in the quantity and size of inclusion results in the increase of the impact work at ambient temperature,while the restriction of IGF is related to the decrease in the total level,and hence in the grain boundary segregation of S.