期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A CELLULAR AUTOMATON-APPROACH TO SIMULATION OFGRAIN STRUCTURE DEVELOPMENT INELECTROSLAG CASTING 被引量:4
1
作者 X.Q. Wei and L. Zhou School of Mechanical Electrical Engineering and School of Chemistry and Materials Science, Nanchang University, Nanchang 330029, China Manuscript received 30 July 1999 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期794-799,共6页
A 3-D cellular automaton model of thermal transfer and solidification has been developed, aiming at a simulational study of the grain structure development in electroslag casting. The program we developed for simulat... A 3-D cellular automaton model of thermal transfer and solidification has been developed, aiming at a simulational study of the grain structure development in electroslag casting. The program we developed for simulation of the model allows the effects of both metallurgical factors, including solidification point, supercooling required for nucleation and its scattering, and liquid/solid interface energy, and thermophysical factors, including heat conduction coeffcients, heat transfer coefficients and latent heat, to be investigated. The effect of process control can be indirectly inspected with the simulation by varying the melting rate. A box counting algorithm was employed to estimate the local curvature of liquid/solid interface. A series of simulated experiments of electroslag casting processes have been carried out. The simulation started from the beginning of the electroslag casting and proceeds by iteration of certain rules, during which a uniform constant slag temperature and a constant melting rate were assumed. It has been observed that a pool of molten metal forms and deepens gradually under constant melting rate. The deepening of the pool slows down with the simulated electroslag casting process, and the depth and shape of the pool tends to be steady after certain height of cast is formed. A finger-like grain structure with the fingers approximately normal to the bottom of the molten metal pool was generally observed. Higher latent heat was found to enhance dendritic growth. The results agree well with general observation of the grain structures in electroslag castings and demonstrate the applicability of cellular automaton modeling to structural development in casting. 展开更多
关键词 electroslay casting grain structure SIMULATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部