The use of‘Electrostatic tweezers'is a promising tool for droplet manipulation,but it faces many limitations in manipulating droplets on superhydrophobic surfaces.Here,we achieve noncontact and multifunctional dr...The use of‘Electrostatic tweezers'is a promising tool for droplet manipulation,but it faces many limitations in manipulating droplets on superhydrophobic surfaces.Here,we achieve noncontact and multifunctional droplet manipulation on Nepenthes-inspired lubricated slippery surfaces via triboelectric electrostatic tweezers(TETs).The TET manipulation of droplets on a slippery surface has many advantages over electrostatic droplet manipulation on a superhydrophobic surface.The electrostatic field induces the redistribution of the charges inside the neutral droplet,which causes the triboelectric charged rod to drive the droplet to move forward under the electrostatic force.Positively or negatively charged droplets can also be driven by TET based on electrostatic attraction and repulsion.TET enables us to manipulate droplets under diverse conditions,including anti-gravity climb,suspended droplets,corrosive liquids,low-surface-tension liquids(e.g.ethanol with a surface tension of 22.3 mN·m^(-1)),different droplet volumes(from 100 nl to 0.5 ml),passing through narrow slits,sliding over damaged areas,on various solid substrates,and even droplets in an enclosed system.Various droplet-related applications,such as motion guidance,motion switching,droplet-based microreactions,surface cleaning,surface defogging,liquid sorting,and cell labeling,can be easily achieved with TETs.展开更多
Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-l...Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability.展开更多
The linear and nonlinear simulations are carried out using the gyrokinetic code NLT for the electrostatic instabilities in the core region of a deuterium plasma based on the International Thermonuclear Experimental Re...The linear and nonlinear simulations are carried out using the gyrokinetic code NLT for the electrostatic instabilities in the core region of a deuterium plasma based on the International Thermonuclear Experimental Reactor(ITER)baseline scenario.The kinetic electron effects on the linear frequency and nonlinear transport are studied by adopting the adiabatic electron model and the fully drift-kinetic electron model in the NLT code,respectively.The linear simulations focus on the dependence of linear frequency on the plasma parameters,such as the ion and electron temperature gradientsκ_(Ti,e)≡R=L_(Ti,e),the density gradientκ_(n)≡R/L_(n)and the ion-electron temperature ratioτ=T_(e)=T_(i).Here,is the major radius,and T_(e)and T_(i)denote the electron and ion temperatures,respectively.L_(A)=-(δ_(r)lnA)^(-1)is the gradient scale length,with denoting the density,the ion and electron temperatures,respectively.In the kinetic electron model,the ion temperature gradient(ITG)instability and the trapped electron mode(TEM)dominate in the small and large k_(θ)region,respectively,wherek_(θ)is the poloidal wavenumber.The TEMdominant region becomes wider by increasing(decreasing)κ_(T_(e))(κ_(T_(i)))or by decreasingκ_(n).For the nominal parameters of the ITER baseline scenario,the maximum growth rate of dominant ITG instability in the kinetic electron model is about three times larger than that in the adiabatic electron model.The normalized linear frequency depends on the value ofτ,rather than the value of T_(e)or T_(i),in both the adiabatic and kinetic electron models.The nonlinear simulation results show that the ion heat diffusivity in the kinetic electron model is quite a lot larger than that in the adiabatic electron model,the radial structure is finer and the time oscillation is more rapid.In addition,the magnitude of the fluctuated potential at the saturated stage peaks in the ITGdominated region,and contributions from the TEM(dominating in the higher k_(θ)region)to the nonlinear transport can be neglected.In the adiabatic electron model,the zonal radial electric field is found to be mainly driven by the turbulent energy flux,and the contribution of turbulent poloidal Reynolds stress is quite small due to the toroidal shielding effect.However,in the kinetic electron model,the turbulent energy flux is not strong enough to drive the zonal radial electric field in the nonlinear saturated stage.The kinetic electron effects on the mechanism of the turbulence-driven zonal radial electric field should be further investigated.展开更多
To investigate the process optimizationof Cu-en/AP composite microspheres preparation via electrostatic spraying,and to reveal the effects of droplet properties and flow rate variations on the experimental results dur...To investigate the process optimizationof Cu-en/AP composite microspheres preparation via electrostatic spraying,and to reveal the effects of droplet properties and flow rate variations on the experimental results during the electrostatic spraying process,the prepared process parameters of Cu-en/AP composite microspheres by electrostatic spray method under the orthogonal experimental design simulated by ANSYS(Fluent).The influence of flow rate,solvent ratio,and solid mass on the experimental results is examined using a controlled variable method.The results indicate that under the conditions of a flow rate of 2.67×10^(-3)kg/s an acetone-to-deionized water ratio of 1.5∶1.0,and a solid mass of 200 mg,the theoretical particle size of the composite microspheres can reach e nanoscale.Droplet trajectories in the electric field remain stable without significant deviation.The simulation results show that particle diameter decreases with increasing flow rate,with the trend leveling off around a flow rate of 1×10^(-3)kg/s.As the solvent ratio increases(with higher acetone content),particle diameter initially decreases,reaching a minimum around a ratio of 1.5∶1.0 before gradually increasing.Increasing the solid mass also reduces the particle diameter,with a linear increase in diameter observed at around 220 mg.Cu-en/AP composite microspheres with nanoscale dimensions were confirmed under these conditions by the final SEM images.展开更多
While spray-drying has been widely utilized to improve the bioavailability of poorly water-soluble drugs,the outcomes often exhibit suboptimal particle size distribution and large particle sizes,limiting their effecti...While spray-drying has been widely utilized to improve the bioavailability of poorly water-soluble drugs,the outcomes often exhibit suboptimal particle size distribution and large particle sizes,limiting their effectiveness.In this study,we introduce electrostatic spraying as an advanced technology tailored for poorly water-soluble drugs,enabling the fabrication of nanoparticles with fine and uniform particle size distribution.Regorafenib(1 g),as a model drug,copovidone(5 g),and sodium dodecyl sulfate(0.1 g)were dissolved in 200 ml ethanol and subjected to conventional-spray-dryer and electrostatic spray dryer.The electrostatic spray-dried nanoparticles(ESDN)showed smaller particle sizes with better uniformity compared to conventional spray-dried nanoparticles(CSDN).ESDN demonstrated significantly enhanced solubility and rapid release in water.In vitro studies revealed that ESDN induced apoptosis in HCT-116 cells to a greater extent,exhibiting superior cytotoxicity compared to CSDN.Furthermore,ESDN substantially improved oral bioavailability and antitumor efficacy compared to CSDN.These findings suggest that ESD shows potential in developing enhanced drug delivery systems for poorly water-soluble drugs,effectively addressing the limitations associated with CSD methods.展开更多
The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with ...The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with the CMOS circuit,but also acts on the protection circuit.This paper establishes a model of on-chip CMOS electrostatic discharge protection circuit and selects square pulse as the FREMP signals.Based on multiple physical parameter models,it depicts the distribution of the lattice temperature,current density,and electric field intensity inside the device.At the same time,this paper explores the changes of the internal devices in the circuit under the injection of fast rising time electromagnetic pulse and describes the relationship between the damage amplitude threshold and the pulse width.The results show that the ESD protection circuit has potential damage risk,and the injection of FREMP leads to irreversible heat loss inside the circuit.In addition,pulse signals with different attributes will change the damage threshold of the circuit.These results provide an important reference for further evaluation of the influence of electromagnetic environment on the chip,which is helpful to carry out the reliability enhancement research of ESD protection circuit.展开更多
Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous...Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.展开更多
The mechanics of Coulomb attraction and repulsion between charged particles are not currently understood but can be explained using a photon-pair aether. A spin-2 photon pair with no net E or B fields can freely penet...The mechanics of Coulomb attraction and repulsion between charged particles are not currently understood but can be explained using a photon-pair aether. A spin-2 photon pair with no net E or B fields can freely penetrate deep into matter. It may collide with a charged particle and be transformed through the interaction into a spin-0 photon pair. This outflow of spin-0 photon pairs forms a homogeneous (+E) or (−E) electrostatic field around the particle, depending on its charge. Charged particles in the vicinity of each other experience an asymmetry in the incoming field, from which attraction or repulsion arises. Repulsion or attraction is understood as the transfer of momentum from photons to particles, which results in the appearance of a force.展开更多
The phenomenon of electrical attraction and repulsion between charged particles is well known, and described mathematically by Coulomb’s Law, yet until now there has been no explanation for why this occurs. There has...The phenomenon of electrical attraction and repulsion between charged particles is well known, and described mathematically by Coulomb’s Law, yet until now there has been no explanation for why this occurs. There has been no mechanistic explanation that reveals what causes the charged particles to accelerate, either towards or away from each other. This paper gives a detailed explanation of the phenomena of electrical attraction and repulsion based on my previous work that determined the exact wave-function solutions for both the Electron and the Positron. It is revealed that the effects are caused by wave interactions between the wave functions that result in Electromagnetic reflections of parts of the particle’s wave functions, causing a change in their momenta.展开更多
Microbubbles have attracted considerable attention due to their distinctive properties,such as large surface area,inherent selfcompression,and exceptional mass transfer efficiency.These features render microbubbles va...Microbubbles have attracted considerable attention due to their distinctive properties,such as large surface area,inherent selfcompression,and exceptional mass transfer efficiency.These features render microbubbles valuable across a diverse range of industries,such as water treatment,mineral flotation,and the food industry.While several methods for microbubble generation exist,the gas–liquid membrane dispersion technique emerges as a reproducible and efficient alternative.Nevertheless,conventional approaches struggle to achieve active in situ control of bubble generation.In this study,we introduce an electrostatically responsive liquid gating system(ERLGS)designed for the active management of microbubble production.Utilizing electric fields and anionic surfactants,our system showcases the capability to dynamically regulate bubble size by manipulating the solid–liquid adsorption.Experiments confirm that this active control relies on the electrostatic adsorption and desorption of anionic surfactants,thereby regulating the interactions among the solid–liquid–gas interfaces.Our research elucidates the ERLGS's ability of precisely controlling the generation of bubbles in situ,enabling nearly one-order-of-magnitude change in bubble size,underscoring its applicability in various fields.展开更多
The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functiona...The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functionalized solution for introducing the OH- and groups, and then the heparin was immobilized on the active TiO2 films through the electrostatic self assembly technology. It is shown that the heparinized films are mainly composed of anatase and rutile with smooth and dense surface. In vitro blood compatibility was evaluated by haemolysis test, clotting time and platelet adhesion behavior tests. The results show that the haemocompatibility of the alloy could be significantly improved by surface heparinization.展开更多
In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object a...In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object and boundary was presented. The boundary is determined by the maximum distance the sensor can detect. The object model is obtained by multiplying the terms in Poisson's equation with a scale reduction factor and the real value can be reconstructed with the same reverse process after software calculation. Using the finite element analysis program, the simulation value is close to the theoretical value with a little error. The boundary determination and scale reduction method is suitable to modeling the irregular electrostatic field around air targets, such as airplane, missile and so on, which is based on commonly used personal computer (PC). The technology reduces the calculation and storage cost greatly.展开更多
A novel into-plane rotating rnicromirror actuated by a hybrid electrostatic driving structure is presented. The hybrid driving structure is made up of a planar plate drive and a vertical comb drive. The device is fabr...A novel into-plane rotating rnicromirror actuated by a hybrid electrostatic driving structure is presented. The hybrid driving structure is made up of a planar plate drive and a vertical comb drive. The device is fabricated in SOI substrate by using a bulk-and-surface mixed silicon micromachining process. As demonstrated by experiment, the novel driving structure can actuate the mirror to achieve large-range continuous rotation as well as spontaneous 90°rotation induced by the pull-in effect. The continuous rotating range of the micromirror is increased to about 46° at an increased yielding voltage. The measured yielding voltages of the mirrors with torsional springs of 1 and 0.5μm in thickness are 390 - 410V and 140 - 160V, respectively. The optical insertion loss has also been measured to be --1.98dB when the mirror serves as an optical switch.展开更多
The modeling and evaluation of a prototype rotary micromotor where the annular rotor is supported electrostatically in five degrees of freedom is presented in order to study the behavior of this levitated micromotor a...The modeling and evaluation of a prototype rotary micromotor where the annular rotor is supported electrostatically in five degrees of freedom is presented in order to study the behavior of this levitated micromotor and further optimize the device geometry. The analytical torque model is obtained based on the principle of a planar variable-capacitance electrostatic motor while the viscous damping caused by air film between the stator and rotor is derived using laminar Couette flow model. Simulation results of the closed-loop drive motor, based on the developed dynamic model after eliminating mechanical friction torque via electrostatic suspension, are presented. The effects of the high-voltage drive, required for rotation of the rotor, on overload capacity and suspension stiffness of the electrostatic bearing system are also analytically evaluated in an effort to determine allowable drive voltage and attainable rotor speed in operation. The analytical results show that maximum speed of the micromotor is limited mainly by viscous drag torque and stiffness of the bearing system. Therefore, it is expected to operate the device in vacuum so as to increase the rotor speed significantly, especially for those electrostatically levitated micromotors to be used as an angular rate micro-gyroscope.展开更多
A foil–microchannel plate(MCP)detector,which uses electrostatic lenses and possesses both good position and timing resolutions,has been designed and simulated for beam diagnostics and mass measurements at the next-ge...A foil–microchannel plate(MCP)detector,which uses electrostatic lenses and possesses both good position and timing resolutions,has been designed and simulated for beam diagnostics and mass measurements at the next-generation heavy-ion-beam facility HIAF in China.Characterized by low energy loss and good performances of timing and position measurements,it would be located at focal planes in fragment separator HFRS for position monitoring,beam turning,Bq measurement,and trajectory reconstruction.Moreover,it will benefit the building-up of a magnetic-rigidity–energy-loss–time-offlight(BqDETOF)method at HFRS for high-precision in-flight particle identification of radioactive isotope beams on an event-by-event basis.Most importantly,the detector can be utilized for in-ring TOF and position measurements,beam-line TOF measurements at two achromatic foci,and position measurements at a dispersive focus of HFRS,thus making it possible to use two complementary mass measurement methods[isochronous mass spectrometry at the storage ring SRing and magnetic-rigidity–time-of-flight(BqTOF)at the beam-line HFRS]in one single experimental run.展开更多
A study was conducted to determine the effects of electrostatic field (ESF) treatment on seed germination and seedling growth of Sorbus pohuashanesis. The experiments were arranged by uniform design computed by the ...A study was conducted to determine the effects of electrostatic field (ESF) treatment on seed germination and seedling growth of Sorbus pohuashanesis. The experiments were arranged by uniform design computed by the Data Processing System (DPS), including three levels of seeds soaking time, four levels of ESF intensity and four levels of ESF treatment time, with 12 treatments. Ten seeds were used in each treatment with three replicates. Seed vigor, seed germinating ability, emergence rate of seedling, survival rate of seedling, and seedling height and diameter, as well as the change in activities of superoxide dismutase (SOD), soluble protein contents, total chlorophyll contents, soluble total sugar contents in leaves of S. pohuashanensis seedlings were measured after ESF treatments. The experiment results show that ESF treatment could improve the water absorption ability of dry seeds of S. pohuashanensis, resulting in fast germination at room temperature under light conditions. Combined treatment of ESF with cold stratification could increase seed germination percentage significantly (to 42.20%), promote seedling height growth, affect leaf SOD activity, and could raise contents of total chlorophyll, soluble protein, and total soluble sugar in leaves. Seed soaking time had a significant effect on seed relative electroconductivity, seed germination under light, SOD activity, soluble protein content and total soluble sugar content of seedling leaves. ESF intensity exerted a moderate effect on these indexes. ESF treatment time only had significant effect on total chlorophyll contents, no evident effect on other indexes.展开更多
Multi-fluid k-e-kp, two phase turbulence model is used to simulate charged gas-liquid two phase coaxial jet, which is the transorting flow field in electrostatic spraying. Compared with the results of experiment, cha...Multi-fluid k-e-kp, two phase turbulence model is used to simulate charged gas-liquid two phase coaxial jet, which is the transorting flow field in electrostatic spraying. Compared with the results of experiment, charged gas-liquid two-phase turbulence can be well predicted by this model.展开更多
The paper studied the effect of high-voltage electrostatic fields on the postharvest quality of strawberries. The results showed that the respiration rate decreased significantly, the content of soluble solids kept at...The paper studied the effect of high-voltage electrostatic fields on the postharvest quality of strawberries. The results showed that the respiration rate decreased significantly, the content of soluble solids kept at high level, and the activities of polygalacturonase and cx-cellulase decreased, while the fruit firmness declined slowly. On the seventh day of storage, the rotten rate of strawberries treated by HVEF was 5%, the control group was 15%.展开更多
Realizing the uniform dispersion of nanocarbons such as carbon nanotube and graphene in metals, is an essential prerequisite to fully exhibit their enhancement effect in mechanical, thermal, and electrical properties ...Realizing the uniform dispersion of nanocarbons such as carbon nanotube and graphene in metals, is an essential prerequisite to fully exhibit their enhancement effect in mechanical, thermal, and electrical properties of metal matrix composites(MMCs). In this work, we propose an effective method to achieve uniform distribution of nanocarbons in various metal flakes through a slurry-based method. It relies on the electrostatic interactions between the negatively charged nanocarbons and the positively charged metal flakes when mixed in slurry. For case study, flake metal powders(Al, Mg, Ti,Fe, and Cu) were positively charged in aqueous suspension by spontaneous ionization or cationic surface modification. While nanocarbons, given examples as carboxylic multi-walled carbon nanotubes, pristine single-walled carbon nanotube, and carbon nanotube–graphene oxide hybrid were negatively charged by the ionization of oxygen-containing functional groups or anionic surfactant. It was found that through the electrostatic interaction mechanism, all kinds of nanocarbons can be spontaneously and efficiently adsorbed onto the surface of various metal flakes. The development of such a versatile method would provide us great opportunities to fabricate advanced MMCs with appealing properties.展开更多
基金supported by the USTC Research Funds of the Double First-Class Initiative(Nos.YD2090002013,YD234000009)the National Natural Science Foundation of China(Nos.61927814,62325507,52122511,U20A20290,62005262)。
文摘The use of‘Electrostatic tweezers'is a promising tool for droplet manipulation,but it faces many limitations in manipulating droplets on superhydrophobic surfaces.Here,we achieve noncontact and multifunctional droplet manipulation on Nepenthes-inspired lubricated slippery surfaces via triboelectric electrostatic tweezers(TETs).The TET manipulation of droplets on a slippery surface has many advantages over electrostatic droplet manipulation on a superhydrophobic surface.The electrostatic field induces the redistribution of the charges inside the neutral droplet,which causes the triboelectric charged rod to drive the droplet to move forward under the electrostatic force.Positively or negatively charged droplets can also be driven by TET based on electrostatic attraction and repulsion.TET enables us to manipulate droplets under diverse conditions,including anti-gravity climb,suspended droplets,corrosive liquids,low-surface-tension liquids(e.g.ethanol with a surface tension of 22.3 mN·m^(-1)),different droplet volumes(from 100 nl to 0.5 ml),passing through narrow slits,sliding over damaged areas,on various solid substrates,and even droplets in an enclosed system.Various droplet-related applications,such as motion guidance,motion switching,droplet-based microreactions,surface cleaning,surface defogging,liquid sorting,and cell labeling,can be easily achieved with TETs.
基金financial support from Project funded by National Natural Science Foundation of China(52172038,22179017)funding from Dalian University of Technology Open Fund for Large Scale Instrument Equipment
文摘Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability.
基金supported by the National MCF Energy R&D Program of China(No.2019YFE03060000)National Natural Science Foundation of China(Nos.12005063,12375215 and 12175034)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2022HSC-CIP008).
文摘The linear and nonlinear simulations are carried out using the gyrokinetic code NLT for the electrostatic instabilities in the core region of a deuterium plasma based on the International Thermonuclear Experimental Reactor(ITER)baseline scenario.The kinetic electron effects on the linear frequency and nonlinear transport are studied by adopting the adiabatic electron model and the fully drift-kinetic electron model in the NLT code,respectively.The linear simulations focus on the dependence of linear frequency on the plasma parameters,such as the ion and electron temperature gradientsκ_(Ti,e)≡R=L_(Ti,e),the density gradientκ_(n)≡R/L_(n)and the ion-electron temperature ratioτ=T_(e)=T_(i).Here,is the major radius,and T_(e)and T_(i)denote the electron and ion temperatures,respectively.L_(A)=-(δ_(r)lnA)^(-1)is the gradient scale length,with denoting the density,the ion and electron temperatures,respectively.In the kinetic electron model,the ion temperature gradient(ITG)instability and the trapped electron mode(TEM)dominate in the small and large k_(θ)region,respectively,wherek_(θ)is the poloidal wavenumber.The TEMdominant region becomes wider by increasing(decreasing)κ_(T_(e))(κ_(T_(i)))or by decreasingκ_(n).For the nominal parameters of the ITER baseline scenario,the maximum growth rate of dominant ITG instability in the kinetic electron model is about three times larger than that in the adiabatic electron model.The normalized linear frequency depends on the value ofτ,rather than the value of T_(e)or T_(i),in both the adiabatic and kinetic electron models.The nonlinear simulation results show that the ion heat diffusivity in the kinetic electron model is quite a lot larger than that in the adiabatic electron model,the radial structure is finer and the time oscillation is more rapid.In addition,the magnitude of the fluctuated potential at the saturated stage peaks in the ITGdominated region,and contributions from the TEM(dominating in the higher k_(θ)region)to the nonlinear transport can be neglected.In the adiabatic electron model,the zonal radial electric field is found to be mainly driven by the turbulent energy flux,and the contribution of turbulent poloidal Reynolds stress is quite small due to the toroidal shielding effect.However,in the kinetic electron model,the turbulent energy flux is not strong enough to drive the zonal radial electric field in the nonlinear saturated stage.The kinetic electron effects on the mechanism of the turbulence-driven zonal radial electric field should be further investigated.
基金National Natural Science Foundation of China(No.2275150)。
文摘To investigate the process optimizationof Cu-en/AP composite microspheres preparation via electrostatic spraying,and to reveal the effects of droplet properties and flow rate variations on the experimental results during the electrostatic spraying process,the prepared process parameters of Cu-en/AP composite microspheres by electrostatic spray method under the orthogonal experimental design simulated by ANSYS(Fluent).The influence of flow rate,solvent ratio,and solid mass on the experimental results is examined using a controlled variable method.The results indicate that under the conditions of a flow rate of 2.67×10^(-3)kg/s an acetone-to-deionized water ratio of 1.5∶1.0,and a solid mass of 200 mg,the theoretical particle size of the composite microspheres can reach e nanoscale.Droplet trajectories in the electric field remain stable without significant deviation.The simulation results show that particle diameter decreases with increasing flow rate,with the trend leveling off around a flow rate of 1×10^(-3)kg/s.As the solvent ratio increases(with higher acetone content),particle diameter initially decreases,reaching a minimum around a ratio of 1.5∶1.0 before gradually increasing.Increasing the solid mass also reduces the particle diameter,with a linear increase in diameter observed at around 220 mg.Cu-en/AP composite microspheres with nanoscale dimensions were confirmed under these conditions by the final SEM images.
基金This work was supported by the National Research Foundation of South Korea(NRF)grants funded by the South Korean government(MEST)(No.2022R1A2C2004197,RS-2024-00407053 and RS-2023-00208448).
文摘While spray-drying has been widely utilized to improve the bioavailability of poorly water-soluble drugs,the outcomes often exhibit suboptimal particle size distribution and large particle sizes,limiting their effectiveness.In this study,we introduce electrostatic spraying as an advanced technology tailored for poorly water-soluble drugs,enabling the fabrication of nanoparticles with fine and uniform particle size distribution.Regorafenib(1 g),as a model drug,copovidone(5 g),and sodium dodecyl sulfate(0.1 g)were dissolved in 200 ml ethanol and subjected to conventional-spray-dryer and electrostatic spray dryer.The electrostatic spray-dried nanoparticles(ESDN)showed smaller particle sizes with better uniformity compared to conventional spray-dried nanoparticles(CSDN).ESDN demonstrated significantly enhanced solubility and rapid release in water.In vitro studies revealed that ESDN induced apoptosis in HCT-116 cells to a greater extent,exhibiting superior cytotoxicity compared to CSDN.Furthermore,ESDN substantially improved oral bioavailability and antitumor efficacy compared to CSDN.These findings suggest that ESD shows potential in developing enhanced drug delivery systems for poorly water-soluble drugs,effectively addressing the limitations associated with CSD methods.
基金National Natural Science Foundation of China(61974116)。
文摘The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with the CMOS circuit,but also acts on the protection circuit.This paper establishes a model of on-chip CMOS electrostatic discharge protection circuit and selects square pulse as the FREMP signals.Based on multiple physical parameter models,it depicts the distribution of the lattice temperature,current density,and electric field intensity inside the device.At the same time,this paper explores the changes of the internal devices in the circuit under the injection of fast rising time electromagnetic pulse and describes the relationship between the damage amplitude threshold and the pulse width.The results show that the ESD protection circuit has potential damage risk,and the injection of FREMP leads to irreversible heat loss inside the circuit.In addition,pulse signals with different attributes will change the damage threshold of the circuit.These results provide an important reference for further evaluation of the influence of electromagnetic environment on the chip,which is helpful to carry out the reliability enhancement research of ESD protection circuit.
文摘Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.
文摘The mechanics of Coulomb attraction and repulsion between charged particles are not currently understood but can be explained using a photon-pair aether. A spin-2 photon pair with no net E or B fields can freely penetrate deep into matter. It may collide with a charged particle and be transformed through the interaction into a spin-0 photon pair. This outflow of spin-0 photon pairs forms a homogeneous (+E) or (−E) electrostatic field around the particle, depending on its charge. Charged particles in the vicinity of each other experience an asymmetry in the incoming field, from which attraction or repulsion arises. Repulsion or attraction is understood as the transfer of momentum from photons to particles, which results in the appearance of a force.
文摘The phenomenon of electrical attraction and repulsion between charged particles is well known, and described mathematically by Coulomb’s Law, yet until now there has been no explanation for why this occurs. There has been no mechanistic explanation that reveals what causes the charged particles to accelerate, either towards or away from each other. This paper gives a detailed explanation of the phenomena of electrical attraction and repulsion based on my previous work that determined the exact wave-function solutions for both the Electron and the Positron. It is revealed that the effects are caused by wave interactions between the wave functions that result in Electromagnetic reflections of parts of the particle’s wave functions, causing a change in their momenta.
基金supported by the National Natural Science Foundation of China(52025132,52300138,21621091,22021001,and 22121001)the National Postdoctoral Program for Innovative Talents(BX20230198)+4 种基金the China Postdoctoral Science Foundation(2023M732945)the Higher Education Discipline Innovation Project(B17027,B16029)the Natural Science Foundation of Fujian Province of China(2022J02059,2023J05012)the Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(IKKEM)(RD2022070601)the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘Microbubbles have attracted considerable attention due to their distinctive properties,such as large surface area,inherent selfcompression,and exceptional mass transfer efficiency.These features render microbubbles valuable across a diverse range of industries,such as water treatment,mineral flotation,and the food industry.While several methods for microbubble generation exist,the gas–liquid membrane dispersion technique emerges as a reproducible and efficient alternative.Nevertheless,conventional approaches struggle to achieve active in situ control of bubble generation.In this study,we introduce an electrostatically responsive liquid gating system(ERLGS)designed for the active management of microbubble production.Utilizing electric fields and anionic surfactants,our system showcases the capability to dynamically regulate bubble size by manipulating the solid–liquid adsorption.Experiments confirm that this active control relies on the electrostatic adsorption and desorption of anionic surfactants,thereby regulating the interactions among the solid–liquid–gas interfaces.Our research elucidates the ERLGS's ability of precisely controlling the generation of bubbles in situ,enabling nearly one-order-of-magnitude change in bubble size,underscoring its applicability in various fields.
基金Project (31100693/C100302) supported by the National Natural Science Foundation of ChinaProject (31011120049) supported by the Australia-China Special Fund, International Science Linkages Program co-supported by the Department of Innovation, Industry, Science and Research of Australia, and the Ministry of Science and Technology and National Science Foundation of China+1 种基金Project(2010ZDKG-96) supported by the Major Subject of "13115" Programs of Shaan’xi Province, ChinaProject (2012CB619102) supported by the National Basic Research Program of China
文摘The haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy was studied after surface heparinization. A layer of sol-gel TiO2 films was applied on the alloy samples followed by active treatment in the bio-functionalized solution for introducing the OH- and groups, and then the heparin was immobilized on the active TiO2 films through the electrostatic self assembly technology. It is shown that the heparinized films are mainly composed of anatase and rutile with smooth and dense surface. In vitro blood compatibility was evaluated by haemolysis test, clotting time and platelet adhesion behavior tests. The results show that the haemocompatibility of the alloy could be significantly improved by surface heparinization.
文摘In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object and boundary was presented. The boundary is determined by the maximum distance the sensor can detect. The object model is obtained by multiplying the terms in Poisson's equation with a scale reduction factor and the real value can be reconstructed with the same reverse process after software calculation. Using the finite element analysis program, the simulation value is close to the theoretical value with a little error. The boundary determination and scale reduction method is suitable to modeling the irregular electrostatic field around air targets, such as airplane, missile and so on, which is based on commonly used personal computer (PC). The technology reduces the calculation and storage cost greatly.
文摘A novel into-plane rotating rnicromirror actuated by a hybrid electrostatic driving structure is presented. The hybrid driving structure is made up of a planar plate drive and a vertical comb drive. The device is fabricated in SOI substrate by using a bulk-and-surface mixed silicon micromachining process. As demonstrated by experiment, the novel driving structure can actuate the mirror to achieve large-range continuous rotation as well as spontaneous 90°rotation induced by the pull-in effect. The continuous rotating range of the micromirror is increased to about 46° at an increased yielding voltage. The measured yielding voltages of the mirrors with torsional springs of 1 and 0.5μm in thickness are 390 - 410V and 140 - 160V, respectively. The optical insertion loss has also been measured to be --1.98dB when the mirror serves as an optical switch.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2008AA04Z312)National Natural Science Foundation of China (Grant No. 50577036)
文摘The modeling and evaluation of a prototype rotary micromotor where the annular rotor is supported electrostatically in five degrees of freedom is presented in order to study the behavior of this levitated micromotor and further optimize the device geometry. The analytical torque model is obtained based on the principle of a planar variable-capacitance electrostatic motor while the viscous damping caused by air film between the stator and rotor is derived using laminar Couette flow model. Simulation results of the closed-loop drive motor, based on the developed dynamic model after eliminating mechanical friction torque via electrostatic suspension, are presented. The effects of the high-voltage drive, required for rotation of the rotor, on overload capacity and suspension stiffness of the electrostatic bearing system are also analytically evaluated in an effort to determine allowable drive voltage and attainable rotor speed in operation. The analytical results show that maximum speed of the micromotor is limited mainly by viscous drag torque and stiffness of the bearing system. Therefore, it is expected to operate the device in vacuum so as to increase the rotor speed significantly, especially for those electrostatically levitated micromotors to be used as an angular rate micro-gyroscope.
基金supported by the National Natural Science Foundation of China(Nos.11605248,11605249,11605267,and 11805032.)
文摘A foil–microchannel plate(MCP)detector,which uses electrostatic lenses and possesses both good position and timing resolutions,has been designed and simulated for beam diagnostics and mass measurements at the next-generation heavy-ion-beam facility HIAF in China.Characterized by low energy loss and good performances of timing and position measurements,it would be located at focal planes in fragment separator HFRS for position monitoring,beam turning,Bq measurement,and trajectory reconstruction.Moreover,it will benefit the building-up of a magnetic-rigidity–energy-loss–time-offlight(BqDETOF)method at HFRS for high-precision in-flight particle identification of radioactive isotope beams on an event-by-event basis.Most importantly,the detector can be utilized for in-ring TOF and position measurements,beam-line TOF measurements at two achromatic foci,and position measurements at a dispersive focus of HFRS,thus making it possible to use two complementary mass measurement methods[isochronous mass spectrometry at the storage ring SRing and magnetic-rigidity–time-of-flight(BqTOF)at the beam-line HFRS]in one single experimental run.
基金supported by the Key Technologies R&D Program of China during 2006–2010 (2006BAD03A04)
文摘A study was conducted to determine the effects of electrostatic field (ESF) treatment on seed germination and seedling growth of Sorbus pohuashanesis. The experiments were arranged by uniform design computed by the Data Processing System (DPS), including three levels of seeds soaking time, four levels of ESF intensity and four levels of ESF treatment time, with 12 treatments. Ten seeds were used in each treatment with three replicates. Seed vigor, seed germinating ability, emergence rate of seedling, survival rate of seedling, and seedling height and diameter, as well as the change in activities of superoxide dismutase (SOD), soluble protein contents, total chlorophyll contents, soluble total sugar contents in leaves of S. pohuashanensis seedlings were measured after ESF treatments. The experiment results show that ESF treatment could improve the water absorption ability of dry seeds of S. pohuashanensis, resulting in fast germination at room temperature under light conditions. Combined treatment of ESF with cold stratification could increase seed germination percentage significantly (to 42.20%), promote seedling height growth, affect leaf SOD activity, and could raise contents of total chlorophyll, soluble protein, and total soluble sugar in leaves. Seed soaking time had a significant effect on seed relative electroconductivity, seed germination under light, SOD activity, soluble protein content and total soluble sugar content of seedling leaves. ESF intensity exerted a moderate effect on these indexes. ESF treatment time only had significant effect on total chlorophyll contents, no evident effect on other indexes.
基金This project is supported by Provincial Basic Application Granting of Jiangsu(No. B197063
文摘Multi-fluid k-e-kp, two phase turbulence model is used to simulate charged gas-liquid two phase coaxial jet, which is the transorting flow field in electrostatic spraying. Compared with the results of experiment, charged gas-liquid two-phase turbulence can be well predicted by this model.
基金This research was funded by the National Natural Sci—ence Foundation of China(30170665).
文摘The paper studied the effect of high-voltage electrostatic fields on the postharvest quality of strawberries. The results showed that the respiration rate decreased significantly, the content of soluble solids kept at high level, and the activities of polygalacturonase and cx-cellulase decreased, while the fruit firmness declined slowly. On the seventh day of storage, the rotten rate of strawberries treated by HVEF was 5%, the control group was 15%.
基金the financial support of the National Basic Research Program(973 Program)(No.2012CB619600)the National Natural Science Foundation(Nos.51131004,51071100,51001071,51511130038,51501111,51471190)+1 种基金the National High-Tech R&D Program(863 Program)(No.2012AA030311)the research grant(Nos.14DZ2261200,15JC1402100,13PJ1404000,14520710100)from Shanghai government
文摘Realizing the uniform dispersion of nanocarbons such as carbon nanotube and graphene in metals, is an essential prerequisite to fully exhibit their enhancement effect in mechanical, thermal, and electrical properties of metal matrix composites(MMCs). In this work, we propose an effective method to achieve uniform distribution of nanocarbons in various metal flakes through a slurry-based method. It relies on the electrostatic interactions between the negatively charged nanocarbons and the positively charged metal flakes when mixed in slurry. For case study, flake metal powders(Al, Mg, Ti,Fe, and Cu) were positively charged in aqueous suspension by spontaneous ionization or cationic surface modification. While nanocarbons, given examples as carboxylic multi-walled carbon nanotubes, pristine single-walled carbon nanotube, and carbon nanotube–graphene oxide hybrid were negatively charged by the ionization of oxygen-containing functional groups or anionic surfactant. It was found that through the electrostatic interaction mechanism, all kinds of nanocarbons can be spontaneously and efficiently adsorbed onto the surface of various metal flakes. The development of such a versatile method would provide us great opportunities to fabricate advanced MMCs with appealing properties.