Electrostatic self-assembly method (ESAM) was used to prepare bentonite supported-nano titanium dioxide photocatalysts. The materials were characterized by X-ray diffraction (XRD), fourier transform infrared spect...Electrostatic self-assembly method (ESAM) was used to prepare bentonite supported-nano titanium dioxide photocatalysts. The materials were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Methyl orange was used to estimate the photocatalytic activity of the materials. The effects of the calcination temperature and silane dosage on the photocatalytic activity of the samples were investigated. The experimental results show that the bentonite facilitates the formation of anatase and restrains the transformation of anatase to rutile. Part of nano-size TiO2 particles insert into the galleries of bentonite. The photocatalysts exhibit a synergistic effect of adsorption and photocatalysis on methyl orange. Photocatalysts prepared by ESAM method exhibit higher photocatalytic activity and better recycle ability than those of the traditional method.展开更多
Anionic surfactant sodium lauryl sulfate(SDS), cationic surfactant palmityl trimethyl ammonium chloride(CTAC) and TiO_2 were used to prepare multilayer films on quartz optic fibers by the electrostatic self-assembly (...Anionic surfactant sodium lauryl sulfate(SDS), cationic surfactant palmityl trimethyl ammonium chloride(CTAC) and TiO_2 were used to prepare multilayer films on quartz optic fibers by the electrostatic self-assembly (ESA) method. The whole self-assemble process, the function of surfactant and the effect of TiO_2 slurry′s concentration to the self-assemble were discussed. The isoelectric point of TiO_2 slurry measured by experiment is 6.8. The results show that whatever the concentration of the TiO_2 dispersion, a flat and compact adsorbed monolayer on the optic fiber can be built in a stable dispersion at lower pH. There is a adsorbed equilibrium on the substrate (fiber)/solution interface when enough time of incubation is given. A rough and loosen adsorbed layer is formed on the fiber surface by immersed the substrate in a high pH dispersion (pH>10) because the presence of hydroxyl on particle surface. Film thickness can be controlled by controlling the number of layers in the film.展开更多
Gold colloids were prepared by citrate-induced reduction of hydrogen tetrachloroaurale, and gold nanoparticles were electrostatically self-assembled with poly( diallyldimethylammonium chloride) into multi-layer thin f...Gold colloids were prepared by citrate-induced reduction of hydrogen tetrachloroaurale, and gold nanoparticles were electrostatically self-assembled with poly( diallyldimethylammonium chloride) into multi-layer thin films on si/icon and quartz substrates. The paniculate thin films were characterized by UV-vis spea-troscopy, surface, enhanced Raman scattering, atomic force microscopy and resistivity measurements. Due to the interparticle coupling between individual gold particles, an obvious collective particle plasmon resonance was ob-served on UV-vis spectra , and the particulate thin films exhibited a strong SERS effect. For multilayer thin films with a high particle coverage on substrates , resistivity of the order of 10-4 Ω·cm was yielded.展开更多
Available onlineSilicon monoxide(SiO)is a promising anode material fo r lithium-ion batteries(LIBs)due to its high theoretical specific capacity(~2400 mAh/g),low working potential(<0.5 V vs.Li^+/Li),low cost,easy s...Available onlineSilicon monoxide(SiO)is a promising anode material fo r lithium-ion batteries(LIBs)due to its high theoretical specific capacity(~2400 mAh/g),low working potential(<0.5 V vs.Li^+/Li),low cost,easy synthesis,nontoxicity,abundant natural source and smaller volume expansion than Si.However,low intrinsic electrical conductivity,low initial Coulombic efficiency(ICE)and inevitable volume expansion(~200%)impede its practical application.Here we fabricate SiO/wrinkled MXene composite(SiO-WM)by an electrostatic self-assembly method.Importantly,this method is simple,scalable and taking into account all the issues of SiO.As a result,the SiO-WM exhibits imp roved rate capability,cycling performance and ICE than bare SiO.展开更多
Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-l...Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability.展开更多
Low patency ratio of small-diameter vascular grafts remains a major challenge due to the occurrence of thrombosis formation and intimal hyperplasia after transplantation.Although developing the functional coating with...Low patency ratio of small-diameter vascular grafts remains a major challenge due to the occurrence of thrombosis formation and intimal hyperplasia after transplantation.Although developing the functional coating with release of bioactive molecules on the surface of small-diameter vascular grafts are reported as an effective strategy to improve their patency ratios,it is still difficult for current functional coatings cooperating with spatiotemporal control of bioactive molecules release to mimic the sequential requirements for antithrombogenicity and endothelialization.Herein,on basis of 3D-printed polyelectrolyte-based vascular grafts,a biologically inspired release system with sequential release in spatiotemporal coordination of dual molecules through an electrostatic self-assembly was first described.A series of tubes with tunable diameters were initially fabricated by a coaxial extrusion printing method with customized nozzles,in which a polyelectrolyte ink containing of ε-polylysine and sodium alginate was used.Further,dual bioactive molecules,heparin with negative charges and Tyr-Ile-Gly-Ser-Arg(YIGSR)peptide with positive charges were layer-by-layer assembled onto the surface of these 3D-printed tubes.Due to the electrostatic interaction,the sequential release of heparin and YIGSR was demonstrated and could construct a dynamic microenvironment that was thus conducive to the antithrombogenicity and endothelialization.This study opens a new avenue to fabricate a small-diameter vascular graft with a biologically inspired release system based on electrostatic interaction,revealing a huge potential for development of small-diameter artificial vascular grafts with good patency.展开更多
High-performance epoxy(EP)composites with excellent thermal conductivity and dielectric properties have attracted increasing attention for effective thermal management.In this work,three-dimensional(3D)structural func...High-performance epoxy(EP)composites with excellent thermal conductivity and dielectric properties have attracted increasing attention for effective thermal management.In this work,three-dimensional(3D)structural functional fillers were prepared by an electrostatic self-assembly approach.The negatively charged carbon nanotubes(nCNTs)prepared by carboxylation on the surface of CNTs were attached to the positively charged boron nitride(pBN)to form the 3D pBN@nCNTs functional fillers.The morphological characterizations of the formed 3D pBN@nCNTs fillers and epoxy composites were established,illustrating that nCNTs were linearly overlapped between the BN sheets,thus forming a 3D heat conduction network in the epoxy matrix.The synergistic effect of pBN with nCNTs on the enhancement of thermal conductivity and dielectric properties of composites was systematically studied.The experimental results demonstrated that the thermal conductivity of pBN@nCNTs/EP composites could reach 1.986 W m1K1 with the loading of 50 wt%fillers at 10:1 mass ratio of pBN:nCNTs,which is 464%and 124%higher than that of pure EP and BN/EP,respectively.Simultaneously,the dielectric permittivity was successfully increased to 15.14.Moreover,the thermal stability of the composites was synchronously enhanced.This study provides a facile path to fabricate thermosetting polymer composites with high thermal conductivity and dielectric properties.展开更多
Constructing electrode materials with large capacity and good conductivity is an effective approach to improve the capacitor performance of asymmetric supercapacitors(ASCs).In this paper,ZnCo_(2)S_(4)core-shell nanosp...Constructing electrode materials with large capacity and good conductivity is an effective approach to improve the capacitor performance of asymmetric supercapacitors(ASCs).In this paper,ZnCo_(2)S_(4)core-shell nanospheres are constructed by two-step hydrothermal method.In order to improve the chemical activity of ZnCo_(2)S_(4),ZnCo_(2)S_(4)is activated using cetyltrimethylammonium bromide(CTAB).Then,MXene nanosheets are fixed on the surface of ZnCo_(2)S_(4)by electrostatic selfassembly method to improve the specific surface area of ZnCo_(2)S_(4)and MXene-wrapped ZnCo_(2)S_(4)composite is prepared in this work.Owing to the synergy effect between MXene nanosheets and ZnCo_(2)S_(4)core-shell nanospheres,the as-prepared composite displays fast ion transfer rate and charge/discharge process.The capacity of the MXenewrapped ZnCo_(2)S_(4)composite can reach 1072 F·g^(-1),which is far larger than that of ZnCo_(2)S_(4)(407 F·g^(-1))at 1 A·g^(-1).An ASC device is assembled,which delivers 1.7 V potential window and superior cyclic stability(95.41%capacitance retention).Furthermore,energy density of this device is up to 30.46 Wh·kg^(-1)at a power density of850 W·kg^(-1).The above results demonstrate that MXenewrapped ZnCo_(2)S_(4)composite has great application prospects in electrochemical energy storage field.展开更多
Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review ...Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review discusses the driving forces behind the self-assembly process of perovskite NCs,and the commonly used self-assembly methods and different self-assembly structures are detailed.Subsequently,we summarize the collective optoelectronic properties and application areas of perovskite superlattice structures.Finally,we conclude with an outlook on the potential issues and future challenges in developing perovskite NCs.展开更多
The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with th...The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with the lignin oligomers,were adopted to study their effects during solvent shifting process for LNPs’production.The lignin oligomers with widely distributed molecular weight and abundant guaiacyl units were extracted from wood waste(mainly consists of pine wood),exerting outstanding self-assembly capability.Uniform and spherical LNPs were generated in H_(2)O-n-propanol cosolvent,whereas irregular LNPs were obtained in H_(2)O-methanol cosolvent.The unsatisfactory self-assembly performance of the lignin oligomers in H_(2)O-methanol cosolvent could be attributed to two aspects.On one hand,for the initial dissolution state,the distinguishing Hansen solubility parameter and polarity between methanol solvent and lignin oligomers resulted in the poor dispersion of the lignin oligomers.On the other hand,strong hydrogen bonds between methanol solvent and lignin oligomers during solvent shifting process,hindered the interactions among the lignin oligomers for self-assembly.展开更多
The use of‘Electrostatic tweezers'is a promising tool for droplet manipulation,but it faces many limitations in manipulating droplets on superhydrophobic surfaces.Here,we achieve noncontact and multifunctional dr...The use of‘Electrostatic tweezers'is a promising tool for droplet manipulation,but it faces many limitations in manipulating droplets on superhydrophobic surfaces.Here,we achieve noncontact and multifunctional droplet manipulation on Nepenthes-inspired lubricated slippery surfaces via triboelectric electrostatic tweezers(TETs).The TET manipulation of droplets on a slippery surface has many advantages over electrostatic droplet manipulation on a superhydrophobic surface.The electrostatic field induces the redistribution of the charges inside the neutral droplet,which causes the triboelectric charged rod to drive the droplet to move forward under the electrostatic force.Positively or negatively charged droplets can also be driven by TET based on electrostatic attraction and repulsion.TET enables us to manipulate droplets under diverse conditions,including anti-gravity climb,suspended droplets,corrosive liquids,low-surface-tension liquids(e.g.ethanol with a surface tension of 22.3 mN·m^(-1)),different droplet volumes(from 100 nl to 0.5 ml),passing through narrow slits,sliding over damaged areas,on various solid substrates,and even droplets in an enclosed system.Various droplet-related applications,such as motion guidance,motion switching,droplet-based microreactions,surface cleaning,surface defogging,liquid sorting,and cell labeling,can be easily achieved with TETs.展开更多
The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium...The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer(LBL)self-assembly method.With the help of superior interaction between the layers,the multilayer film possesses excellent mechanical properties(with a tensile strength of 50 MPa).Besides,the film displays outstanding water retention property(blocking moisture of 97.56%)and ultraviolet blocking property.Anthocyanin is introduced into the film to detect the food quality since it is one natural plant polyphenol that is sensitive to the pH changes ranging from 1 to 13 in food when spoilage occurs.It is noted that the film is also bacteriostatic which is desired for food packaging.This study describes a simple technique for the development of advanced multifunctional and fully biodegradable food packaging film and it is a sustainable alternative to plastic packaging.展开更多
Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their mac...Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture.展开更多
We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field t...We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field theory and derive,in a non-parametric setting,the sensitivity of the dissimilarity between the desired and the actual morphologies to arbitrary perturbations in the guiding pattern shape.The sensitivity is then used for the optimization of the confining pattern shapes such that the dissimilarity between the desired and the actual morphologies is minimized.The efficiency and robustness of the proposed gradient-based algorithm are demonstrated in a number of examples related to templating vertical interconnect accesses(VIA).展开更多
Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface mo...Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface morphology and electric property was investigated.The results confirmed the dense membrane of PEDOT:PSS and the lamellar structure of PDDA-rGO on the fibers.It has excellent electrical conductivity and mechanical properties.The fiber based electrochemical transistor(FECTs)prepared by the composite conductive fiber has a maximum output current of 8.7 mA,a transconductance peak of 10 mS,an on time of 1.37 s,an off time of 1.6 s and excellent switching stability.Most importantly,the devices by layer by layer self-assembly technology opens a path for the true integration of organic electronics with traditional textile technologies and materials,laying the foundation for their later widespread application.展开更多
The phenomenon of electrical attraction and repulsion between charged particles is well known, and described mathematically by Coulomb’s Law, yet until now there has been no explanation for why this occurs. There has...The phenomenon of electrical attraction and repulsion between charged particles is well known, and described mathematically by Coulomb’s Law, yet until now there has been no explanation for why this occurs. There has been no mechanistic explanation that reveals what causes the charged particles to accelerate, either towards or away from each other. This paper gives a detailed explanation of the phenomena of electrical attraction and repulsion based on my previous work that determined the exact wave-function solutions for both the Electron and the Positron. It is revealed that the effects are caused by wave interactions between the wave functions that result in Electromagnetic reflections of parts of the particle’s wave functions, causing a change in their momenta.展开更多
Nanoparticles with competitive interactions in solution can aggregate into complex structures. In this work, the synergistic self-assembles of binary particles with electrostatic and van der Waals interactions are stu...Nanoparticles with competitive interactions in solution can aggregate into complex structures. In this work, the synergistic self-assembles of binary particles with electrostatic and van der Waals interactions are studied with the particle Langevin dynamics simulation using a simple coarse-grained particle model. Various aggregations such as spherical, stacking-disk and tube structures are observed by varying the particles size and the interaction strength. The aggregation structures are explained with the packing theories of amphiphilic molecules in solution and dibolck copolymers in bulk. When the opposite ions are introduced into solution, the distribution of structures in the phase diagram appears an obvious offset. The simulation result is helpful to deeply understand the formation mechanism of complex nanostructures of multicomponent particles in solution.展开更多
Ferroptosis has emerged as a potent form of no-apoptotic cell death that offers a promising alternative to avoid the chemoresistance of apoptotic pathways and serves as a vulnerability of cancer.Herein,we have constru...Ferroptosis has emerged as a potent form of no-apoptotic cell death that offers a promising alternative to avoid the chemoresistance of apoptotic pathways and serves as a vulnerability of cancer.Herein,we have constructed a biomimetic self-assembly nano-prodrug system that enables the co-delivery of gefitinib(Gefi),ferrocene(Fc)and dihydroartemisinin(DHA)for the combined therapy of both ferroptosis and apoptosis.In the tumor microenvironment,this nano-prodrug is able to disassemble and trigger drug release under high levels of GSH.Interestingly,the released DHA can downregulate GPX4 level for the enhancement of intracellular ferroptosis from Fc,further executing tumor cell death with concomitant chemotherapy by Gefi.More importantly,this nano-prodrug provides highly homologous targeting ability by coating related cell membranes and exhibits outstanding inhibition of tumor growth and metastasis,as well as no noticeable side-effects during treatments.This simple small molecular self-assembled nano-prodrug provides a new reasonably designed modality for ferroptosis-combined chemotherapy.展开更多
High theoretical capacity and unique layered structures make MoS_(2)a promising lithium-ion battery anode material.However,the anisotropic ion transport in layered structures and the poor intrinsic conductivity of MoS...High theoretical capacity and unique layered structures make MoS_(2)a promising lithium-ion battery anode material.However,the anisotropic ion transport in layered structures and the poor intrinsic conductivity of MoS_(2)lead to unacceptable ion transport capability.Here,we propose in-situ construction of interlayer electrostatic repulsion caused by Co^(2+)substituting Mo^(4+)between MoS_(2)layers,which can break the limitation of interlayer van der Waals forces to fabricate monolayer MoS_(2),thus establishing isotropic ion transport paths.Simultaneously,the doped Co atoms change the electronic structure of monolayer MoS_(2),thus improving its intrinsic conductivity.Importantly,the doped Co atoms can be converted into Co nanoparticles to create a space charge region to accelerate ion transport.Hence,the Co-doped monolayer MoS_(2)shows ultrafast lithium ion transport capability in half/full cells.This work presents a novel route for the preparation of monolayer MoS_(2)and demonstrates its potential for application in fast-charging lithium-ion batteries.展开更多
Lignin waste from the papermaking and biorefineries industry is a significantly promising renewable resource to prepare advanced carbon materials for diverse applications,such as the electrodes of supercapacitors;howe...Lignin waste from the papermaking and biorefineries industry is a significantly promising renewable resource to prepare advanced carbon materials for diverse applications,such as the electrodes of supercapacitors;however,the improvement of their energy density remains a challenge.Here,we design a green and universal approach to prepare the composite electrode material,which is composed of lignin-phenolformaldehyde resins derived hierarchical porous carbon(LR-HPC)as conductive skeletons and the self-assembly manganese cobaltite(MnCo_(2)O_(4))nanocrystals as active sites.The synthesized C@MnCo_(2)O_(4)composite has an abundant porous structure and superior electronic conductivity,allowing for more charge/electron mass transfer channels and active sites for the redox reactions.The composite shows excellent electrochemical performance,such as the maximum specific capacitance of~726 mF cm^(-2)at 0.5 mV s^(-1),due to the significantly enhanced interactive interface between LR-HPC and MnCo_(2)O_(4)crystals.The assembled all-solid-state asymmetric supercapacitor,with the LR-HPC and C@MnCo_(2)O_(4)as cathode and anode,respectively,exhibits the highest volumetric energy density of 0.68 mWh cm^(-3)at a power density of 8.2 mW cm^(-3).Moreover,this device shows a high capacity retention ratio of~87.6%at 5 mA cm^(-2)after 5000 cycles.展开更多
基金Funded by the Natural Science Foundation of Hebei Province, China (No. E2008000537)the Foundation for Development of Science and Technology of Hebei Province, China (No. 07215156)the Open Research Foundation of Key Laboratory of Advanced Civil Engineering Materials (Tongji University),Ministry of Education, China (No. 2010412)
文摘Electrostatic self-assembly method (ESAM) was used to prepare bentonite supported-nano titanium dioxide photocatalysts. The materials were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Methyl orange was used to estimate the photocatalytic activity of the materials. The effects of the calcination temperature and silane dosage on the photocatalytic activity of the samples were investigated. The experimental results show that the bentonite facilitates the formation of anatase and restrains the transformation of anatase to rutile. Part of nano-size TiO2 particles insert into the galleries of bentonite. The photocatalysts exhibit a synergistic effect of adsorption and photocatalysis on methyl orange. Photocatalysts prepared by ESAM method exhibit higher photocatalytic activity and better recycle ability than those of the traditional method.
文摘Anionic surfactant sodium lauryl sulfate(SDS), cationic surfactant palmityl trimethyl ammonium chloride(CTAC) and TiO_2 were used to prepare multilayer films on quartz optic fibers by the electrostatic self-assembly (ESA) method. The whole self-assemble process, the function of surfactant and the effect of TiO_2 slurry′s concentration to the self-assemble were discussed. The isoelectric point of TiO_2 slurry measured by experiment is 6.8. The results show that whatever the concentration of the TiO_2 dispersion, a flat and compact adsorbed monolayer on the optic fiber can be built in a stable dispersion at lower pH. There is a adsorbed equilibrium on the substrate (fiber)/solution interface when enough time of incubation is given. A rough and loosen adsorbed layer is formed on the fiber surface by immersed the substrate in a high pH dispersion (pH>10) because the presence of hydroxyl on particle surface. Film thickness can be controlled by controlling the number of layers in the film.
基金This research was financially supported by China Scholar-ship Council and the Natural Science Foundation of Hubei Province (Project 2000J002)
文摘Gold colloids were prepared by citrate-induced reduction of hydrogen tetrachloroaurale, and gold nanoparticles were electrostatically self-assembled with poly( diallyldimethylammonium chloride) into multi-layer thin films on si/icon and quartz substrates. The paniculate thin films were characterized by UV-vis spea-troscopy, surface, enhanced Raman scattering, atomic force microscopy and resistivity measurements. Due to the interparticle coupling between individual gold particles, an obvious collective particle plasmon resonance was ob-served on UV-vis spectra , and the particulate thin films exhibited a strong SERS effect. For multilayer thin films with a high particle coverage on substrates , resistivity of the order of 10-4 Ω·cm was yielded.
基金supported by the National Natural Science Foundation of China(No.51972198)Shandong Provincial Science and Technology Key Project(No.2018GGX104002)+7 种基金Taishan Scholars Program of Shandong Province(No.tsqn201812002)Independent Innovation Foundation of Shandong Universitythe State Key Program of National Natural Science of China(Nos.61633015,51532005)the Young Scholars Program of Shandong University(No.2016WLJH03),the Project of the Taishan Scholar(No.ts201511004)Shandong Provincial Natural Science Foundation(No.ZR2017MB001)Discipline Construction of High-Level Talents of Shandong University(No.31370089963078)1000 Talent Plan program(No.31370086963030)the National Natural Science Foundation of China(No.21371108)。
文摘Available onlineSilicon monoxide(SiO)is a promising anode material fo r lithium-ion batteries(LIBs)due to its high theoretical specific capacity(~2400 mAh/g),low working potential(<0.5 V vs.Li^+/Li),low cost,easy synthesis,nontoxicity,abundant natural source and smaller volume expansion than Si.However,low intrinsic electrical conductivity,low initial Coulombic efficiency(ICE)and inevitable volume expansion(~200%)impede its practical application.Here we fabricate SiO/wrinkled MXene composite(SiO-WM)by an electrostatic self-assembly method.Importantly,this method is simple,scalable and taking into account all the issues of SiO.As a result,the SiO-WM exhibits imp roved rate capability,cycling performance and ICE than bare SiO.
基金financial support from Project funded by National Natural Science Foundation of China(52172038,22179017)funding from Dalian University of Technology Open Fund for Large Scale Instrument Equipment
文摘Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability.
基金The authors gratefully acknowledge the support for this work from the National Key research and Development Program(Grant No.2018YFA0703100)the National Natural Science Foundation of China(Grant Nos.82072082,31900959)+2 种基金the Youth Innovation Promotion Association of CAS(Grant No.2019350)the Guangdong Natural Science Foundation(Grant No.2019A1515011277)the Shenzhen Fundamental Research Foundation(Grant No.JCYJ20180507182237428).
文摘Low patency ratio of small-diameter vascular grafts remains a major challenge due to the occurrence of thrombosis formation and intimal hyperplasia after transplantation.Although developing the functional coating with release of bioactive molecules on the surface of small-diameter vascular grafts are reported as an effective strategy to improve their patency ratios,it is still difficult for current functional coatings cooperating with spatiotemporal control of bioactive molecules release to mimic the sequential requirements for antithrombogenicity and endothelialization.Herein,on basis of 3D-printed polyelectrolyte-based vascular grafts,a biologically inspired release system with sequential release in spatiotemporal coordination of dual molecules through an electrostatic self-assembly was first described.A series of tubes with tunable diameters were initially fabricated by a coaxial extrusion printing method with customized nozzles,in which a polyelectrolyte ink containing of ε-polylysine and sodium alginate was used.Further,dual bioactive molecules,heparin with negative charges and Tyr-Ile-Gly-Ser-Arg(YIGSR)peptide with positive charges were layer-by-layer assembled onto the surface of these 3D-printed tubes.Due to the electrostatic interaction,the sequential release of heparin and YIGSR was demonstrated and could construct a dynamic microenvironment that was thus conducive to the antithrombogenicity and endothelialization.This study opens a new avenue to fabricate a small-diameter vascular graft with a biologically inspired release system based on electrostatic interaction,revealing a huge potential for development of small-diameter artificial vascular grafts with good patency.
基金National Key Research and Development Program of China(2017YFB0903804)Science and Technology Program of the State Grid Corporation of China(No.5455DW170026).
文摘High-performance epoxy(EP)composites with excellent thermal conductivity and dielectric properties have attracted increasing attention for effective thermal management.In this work,three-dimensional(3D)structural functional fillers were prepared by an electrostatic self-assembly approach.The negatively charged carbon nanotubes(nCNTs)prepared by carboxylation on the surface of CNTs were attached to the positively charged boron nitride(pBN)to form the 3D pBN@nCNTs functional fillers.The morphological characterizations of the formed 3D pBN@nCNTs fillers and epoxy composites were established,illustrating that nCNTs were linearly overlapped between the BN sheets,thus forming a 3D heat conduction network in the epoxy matrix.The synergistic effect of pBN with nCNTs on the enhancement of thermal conductivity and dielectric properties of composites was systematically studied.The experimental results demonstrated that the thermal conductivity of pBN@nCNTs/EP composites could reach 1.986 W m1K1 with the loading of 50 wt%fillers at 10:1 mass ratio of pBN:nCNTs,which is 464%and 124%higher than that of pure EP and BN/EP,respectively.Simultaneously,the dielectric permittivity was successfully increased to 15.14.Moreover,the thermal stability of the composites was synchronously enhanced.This study provides a facile path to fabricate thermosetting polymer composites with high thermal conductivity and dielectric properties.
基金financially supported by the Fundamental Research Funds for the Central Universities (No. 2019XKQYMS16)
文摘Constructing electrode materials with large capacity and good conductivity is an effective approach to improve the capacitor performance of asymmetric supercapacitors(ASCs).In this paper,ZnCo_(2)S_(4)core-shell nanospheres are constructed by two-step hydrothermal method.In order to improve the chemical activity of ZnCo_(2)S_(4),ZnCo_(2)S_(4)is activated using cetyltrimethylammonium bromide(CTAB).Then,MXene nanosheets are fixed on the surface of ZnCo_(2)S_(4)by electrostatic selfassembly method to improve the specific surface area of ZnCo_(2)S_(4)and MXene-wrapped ZnCo_(2)S_(4)composite is prepared in this work.Owing to the synergy effect between MXene nanosheets and ZnCo_(2)S_(4)core-shell nanospheres,the as-prepared composite displays fast ion transfer rate and charge/discharge process.The capacity of the MXenewrapped ZnCo_(2)S_(4)composite can reach 1072 F·g^(-1),which is far larger than that of ZnCo_(2)S_(4)(407 F·g^(-1))at 1 A·g^(-1).An ASC device is assembled,which delivers 1.7 V potential window and superior cyclic stability(95.41%capacitance retention).Furthermore,energy density of this device is up to 30.46 Wh·kg^(-1)at a power density of850 W·kg^(-1).The above results demonstrate that MXenewrapped ZnCo_(2)S_(4)composite has great application prospects in electrochemical energy storage field.
基金financially supported by the National Key Research and Development Program of China (2021YFB3600403)the Fundamental Research Funds for the Central Universities (000-0903069032)。
文摘Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review discusses the driving forces behind the self-assembly process of perovskite NCs,and the commonly used self-assembly methods and different self-assembly structures are detailed.Subsequently,we summarize the collective optoelectronic properties and application areas of perovskite superlattice structures.Finally,we conclude with an outlook on the potential issues and future challenges in developing perovskite NCs.
基金supported by the National Natural Science Foundation of China(22078211)the China Postdoctoral Science Foundation(2022M721115).
文摘The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with the lignin oligomers,were adopted to study their effects during solvent shifting process for LNPs’production.The lignin oligomers with widely distributed molecular weight and abundant guaiacyl units were extracted from wood waste(mainly consists of pine wood),exerting outstanding self-assembly capability.Uniform and spherical LNPs were generated in H_(2)O-n-propanol cosolvent,whereas irregular LNPs were obtained in H_(2)O-methanol cosolvent.The unsatisfactory self-assembly performance of the lignin oligomers in H_(2)O-methanol cosolvent could be attributed to two aspects.On one hand,for the initial dissolution state,the distinguishing Hansen solubility parameter and polarity between methanol solvent and lignin oligomers resulted in the poor dispersion of the lignin oligomers.On the other hand,strong hydrogen bonds between methanol solvent and lignin oligomers during solvent shifting process,hindered the interactions among the lignin oligomers for self-assembly.
基金supported by the USTC Research Funds of the Double First-Class Initiative(Nos.YD2090002013,YD234000009)the National Natural Science Foundation of China(Nos.61927814,62325507,52122511,U20A20290,62005262)。
文摘The use of‘Electrostatic tweezers'is a promising tool for droplet manipulation,but it faces many limitations in manipulating droplets on superhydrophobic surfaces.Here,we achieve noncontact and multifunctional droplet manipulation on Nepenthes-inspired lubricated slippery surfaces via triboelectric electrostatic tweezers(TETs).The TET manipulation of droplets on a slippery surface has many advantages over electrostatic droplet manipulation on a superhydrophobic surface.The electrostatic field induces the redistribution of the charges inside the neutral droplet,which causes the triboelectric charged rod to drive the droplet to move forward under the electrostatic force.Positively or negatively charged droplets can also be driven by TET based on electrostatic attraction and repulsion.TET enables us to manipulate droplets under diverse conditions,including anti-gravity climb,suspended droplets,corrosive liquids,low-surface-tension liquids(e.g.ethanol with a surface tension of 22.3 mN·m^(-1)),different droplet volumes(from 100 nl to 0.5 ml),passing through narrow slits,sliding over damaged areas,on various solid substrates,and even droplets in an enclosed system.Various droplet-related applications,such as motion guidance,motion switching,droplet-based microreactions,surface cleaning,surface defogging,liquid sorting,and cell labeling,can be easily achieved with TETs.
基金National Undergraduate Training Program for Innovation and Entrepreneurship of China (Grant No.202210288027).
文摘The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer(LBL)self-assembly method.With the help of superior interaction between the layers,the multilayer film possesses excellent mechanical properties(with a tensile strength of 50 MPa).Besides,the film displays outstanding water retention property(blocking moisture of 97.56%)and ultraviolet blocking property.Anthocyanin is introduced into the film to detect the food quality since it is one natural plant polyphenol that is sensitive to the pH changes ranging from 1 to 13 in food when spoilage occurs.It is noted that the film is also bacteriostatic which is desired for food packaging.This study describes a simple technique for the development of advanced multifunctional and fully biodegradable food packaging film and it is a sustainable alternative to plastic packaging.
基金Project(ZCLTGS24B0101)supported by Zhejiang Provincial Natural Science Foundation of ChinaProject(Y202250501)supported by Scientific Research Fund of Zhejiang Provincial Education Department,ChinaProject supported by SRT Research Project of Jiaxing Nanhu University,China。
文摘Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture.
文摘We consider the inverse problem of finding guiding pattern shapes that result in desired self-assembly morphologies of block copolymer melts.Specifically,we model polymer selfassembly using the self-consistent field theory and derive,in a non-parametric setting,the sensitivity of the dissimilarity between the desired and the actual morphologies to arbitrary perturbations in the guiding pattern shape.The sensitivity is then used for the optimization of the confining pattern shapes such that the dissimilarity between the desired and the actual morphologies is minimized.The efficiency and robustness of the proposed gradient-based algorithm are demonstrated in a number of examples related to templating vertical interconnect accesses(VIA).
基金Funded by the Key R&D Program of the Science and Technology Department of Hubei Province(No.2022BCE008)。
文摘Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface morphology and electric property was investigated.The results confirmed the dense membrane of PEDOT:PSS and the lamellar structure of PDDA-rGO on the fibers.It has excellent electrical conductivity and mechanical properties.The fiber based electrochemical transistor(FECTs)prepared by the composite conductive fiber has a maximum output current of 8.7 mA,a transconductance peak of 10 mS,an on time of 1.37 s,an off time of 1.6 s and excellent switching stability.Most importantly,the devices by layer by layer self-assembly technology opens a path for the true integration of organic electronics with traditional textile technologies and materials,laying the foundation for their later widespread application.
文摘The phenomenon of electrical attraction and repulsion between charged particles is well known, and described mathematically by Coulomb’s Law, yet until now there has been no explanation for why this occurs. There has been no mechanistic explanation that reveals what causes the charged particles to accelerate, either towards or away from each other. This paper gives a detailed explanation of the phenomena of electrical attraction and repulsion based on my previous work that determined the exact wave-function solutions for both the Electron and the Positron. It is revealed that the effects are caused by wave interactions between the wave functions that result in Electromagnetic reflections of parts of the particle’s wave functions, causing a change in their momenta.
基金V. ACKNOWLEDGMENTS The computer simulation is performed on the High Performance Computing Center of Tianjin University,China. This work was supported by the National Natural Science Foundation of China (No.21274107 and No.91127046). We thank Prof. Bin Zhang, Rui Xu, Bo Du, and Dr. Zi-lu Wang in Tianjin University for helpful discussions.
文摘Nanoparticles with competitive interactions in solution can aggregate into complex structures. In this work, the synergistic self-assembles of binary particles with electrostatic and van der Waals interactions are studied with the particle Langevin dynamics simulation using a simple coarse-grained particle model. Various aggregations such as spherical, stacking-disk and tube structures are observed by varying the particles size and the interaction strength. The aggregation structures are explained with the packing theories of amphiphilic molecules in solution and dibolck copolymers in bulk. When the opposite ions are introduced into solution, the distribution of structures in the phase diagram appears an obvious offset. The simulation result is helpful to deeply understand the formation mechanism of complex nanostructures of multicomponent particles in solution.
基金financial supports from National Natural Science Foundation of China(32000992,21977081,32101124)the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholar(LR23C100001)+1 种基金Wenzhou Medical University(KYYW201901)Zhejiang Qianjiang Talent Plan(QJD20020224)
文摘Ferroptosis has emerged as a potent form of no-apoptotic cell death that offers a promising alternative to avoid the chemoresistance of apoptotic pathways and serves as a vulnerability of cancer.Herein,we have constructed a biomimetic self-assembly nano-prodrug system that enables the co-delivery of gefitinib(Gefi),ferrocene(Fc)and dihydroartemisinin(DHA)for the combined therapy of both ferroptosis and apoptosis.In the tumor microenvironment,this nano-prodrug is able to disassemble and trigger drug release under high levels of GSH.Interestingly,the released DHA can downregulate GPX4 level for the enhancement of intracellular ferroptosis from Fc,further executing tumor cell death with concomitant chemotherapy by Gefi.More importantly,this nano-prodrug provides highly homologous targeting ability by coating related cell membranes and exhibits outstanding inhibition of tumor growth and metastasis,as well as no noticeable side-effects during treatments.This simple small molecular self-assembled nano-prodrug provides a new reasonably designed modality for ferroptosis-combined chemotherapy.
基金financially supported by Shenzhen Key Laboratory of Advanced Energy Storage(No.ZDSYS20220401141000001)the Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.R6005-20)。
文摘High theoretical capacity and unique layered structures make MoS_(2)a promising lithium-ion battery anode material.However,the anisotropic ion transport in layered structures and the poor intrinsic conductivity of MoS_(2)lead to unacceptable ion transport capability.Here,we propose in-situ construction of interlayer electrostatic repulsion caused by Co^(2+)substituting Mo^(4+)between MoS_(2)layers,which can break the limitation of interlayer van der Waals forces to fabricate monolayer MoS_(2),thus establishing isotropic ion transport paths.Simultaneously,the doped Co atoms change the electronic structure of monolayer MoS_(2),thus improving its intrinsic conductivity.Importantly,the doped Co atoms can be converted into Co nanoparticles to create a space charge region to accelerate ion transport.Hence,the Co-doped monolayer MoS_(2)shows ultrafast lithium ion transport capability in half/full cells.This work presents a novel route for the preparation of monolayer MoS_(2)and demonstrates its potential for application in fast-charging lithium-ion batteries.
基金The authors gratefully acknowledge the financial support from the National Key R&D Program of China(2021YFC2101304)China Postdoctoral Science Foundation(BX2021041)。
文摘Lignin waste from the papermaking and biorefineries industry is a significantly promising renewable resource to prepare advanced carbon materials for diverse applications,such as the electrodes of supercapacitors;however,the improvement of their energy density remains a challenge.Here,we design a green and universal approach to prepare the composite electrode material,which is composed of lignin-phenolformaldehyde resins derived hierarchical porous carbon(LR-HPC)as conductive skeletons and the self-assembly manganese cobaltite(MnCo_(2)O_(4))nanocrystals as active sites.The synthesized C@MnCo_(2)O_(4)composite has an abundant porous structure and superior electronic conductivity,allowing for more charge/electron mass transfer channels and active sites for the redox reactions.The composite shows excellent electrochemical performance,such as the maximum specific capacitance of~726 mF cm^(-2)at 0.5 mV s^(-1),due to the significantly enhanced interactive interface between LR-HPC and MnCo_(2)O_(4)crystals.The assembled all-solid-state asymmetric supercapacitor,with the LR-HPC and C@MnCo_(2)O_(4)as cathode and anode,respectively,exhibits the highest volumetric energy density of 0.68 mWh cm^(-3)at a power density of 8.2 mW cm^(-3).Moreover,this device shows a high capacity retention ratio of~87.6%at 5 mA cm^(-2)after 5000 cycles.