To investigate the process optimizationof Cu-en/AP composite microspheres preparation via electrostatic spraying,and to reveal the effects of droplet properties and flow rate variations on the experimental results dur...To investigate the process optimizationof Cu-en/AP composite microspheres preparation via electrostatic spraying,and to reveal the effects of droplet properties and flow rate variations on the experimental results during the electrostatic spraying process,the prepared process parameters of Cu-en/AP composite microspheres by electrostatic spray method under the orthogonal experimental design simulated by ANSYS(Fluent).The influence of flow rate,solvent ratio,and solid mass on the experimental results is examined using a controlled variable method.The results indicate that under the conditions of a flow rate of 2.67×10^(-3)kg/s an acetone-to-deionized water ratio of 1.5∶1.0,and a solid mass of 200 mg,the theoretical particle size of the composite microspheres can reach e nanoscale.Droplet trajectories in the electric field remain stable without significant deviation.The simulation results show that particle diameter decreases with increasing flow rate,with the trend leveling off around a flow rate of 1×10^(-3)kg/s.As the solvent ratio increases(with higher acetone content),particle diameter initially decreases,reaching a minimum around a ratio of 1.5∶1.0 before gradually increasing.Increasing the solid mass also reduces the particle diameter,with a linear increase in diameter observed at around 220 mg.Cu-en/AP composite microspheres with nanoscale dimensions were confirmed under these conditions by the final SEM images.展开更多
While spray-drying has been widely utilized to improve the bioavailability of poorly water-soluble drugs,the outcomes often exhibit suboptimal particle size distribution and large particle sizes,limiting their effecti...While spray-drying has been widely utilized to improve the bioavailability of poorly water-soluble drugs,the outcomes often exhibit suboptimal particle size distribution and large particle sizes,limiting their effectiveness.In this study,we introduce electrostatic spraying as an advanced technology tailored for poorly water-soluble drugs,enabling the fabrication of nanoparticles with fine and uniform particle size distribution.Regorafenib(1 g),as a model drug,copovidone(5 g),and sodium dodecyl sulfate(0.1 g)were dissolved in 200 ml ethanol and subjected to conventional-spray-dryer and electrostatic spray dryer.The electrostatic spray-dried nanoparticles(ESDN)showed smaller particle sizes with better uniformity compared to conventional spray-dried nanoparticles(CSDN).ESDN demonstrated significantly enhanced solubility and rapid release in water.In vitro studies revealed that ESDN induced apoptosis in HCT-116 cells to a greater extent,exhibiting superior cytotoxicity compared to CSDN.Furthermore,ESDN substantially improved oral bioavailability and antitumor efficacy compared to CSDN.These findings suggest that ESD shows potential in developing enhanced drug delivery systems for poorly water-soluble drugs,effectively addressing the limitations associated with CSD methods.展开更多
In the present study,we employed electrostatic spray technology to fabricate mesoporous microspheres containing sodium hyaluronate(SHMM).This approach aimed to overcome a significant challenge in the formulation devel...In the present study,we employed electrostatic spray technology to fabricate mesoporous microspheres containing sodium hyaluronate(SHMM).This approach aimed to overcome a significant challenge in the formulation development process,specifically addressing the limited water-locking ability inherent to the double-helix structure of sodium hyaluronate(SH).Various parameters were systematically investigated,including the solvent employed,concentrations of SH and poly(ethylene oxide),electrospray flow rate,voltage settings,and needle diameter.Through systematic single-factor testing,we identified the optimal formulation process for generating SH microspheres characterized by favorable morphology and particle size.Additionally,a similar single-factor examination focused on the concentration of the pore-forming agent and the drying temperature,leading to the successful production of mesoporous microspheres with discernible pores.The porosity of the three distinct batches of mesoporous microspheres was consistently measured at 20.30%±1.51%.Moreover,all these microspheres displayed a negative surface potential when suspended in water,affirming their strong capacity to bind with positively charged protein drugs.These findings underscored the feasibility of drug loading through ion exchange in subsequent stages.Notably,the successful preparation of recombinant human interferonα-2b crosslinked mesoporous microspheres(rhIFNα-2b-SHCMM)was achieved,demonstrating both high entrapment efficiency and an enhanced drug loading capacity.展开更多
There is an urgent need for new chemical application techniques and sprayers in Chinese orchard spraying.A new tractor-mounted automatic target detecting electrostatics,and air-assisted orchard sprayer was designed an...There is an urgent need for new chemical application techniques and sprayers in Chinese orchard spraying.A new tractor-mounted automatic target detecting electrostatics,and air-assisted orchard sprayer was designed and developed to meet the demand of chemical pest control in orchards.This sprayer light weighted,highly efficient,reduces pesticide use and is friendly to the environment.The techniques of automatic target detecting,electrostatics,and air-assisted spraying were combined in this system.The electrostatically charged droplets are projected toward the target by the assistance of an air stream that increases the droplets penetration within canopy.Experimental results show that the new automatic target detecting orchard sprayer with an infrared sensor can save more than 50%to 75%of pesticides,improve the utilization rate(over 55%),control efficiency,and significantly reduce environmental pollution caused by the pesticide application.At the same time the key technological problems related to air-assisted low volume and electrostatic spraying were solved.展开更多
In order to solve the problem of insufficient adsorption rate of droplets on the target back via aerial electrostatic spray,this study proposed a high-voltage electrostatic generator to charge the liquids in two isola...In order to solve the problem of insufficient adsorption rate of droplets on the target back via aerial electrostatic spray,this study proposed a high-voltage electrostatic generator to charge the liquids in two isolated water tanks with positive and negative charges respectively.A charge transfer loop was developed in space between the aerial electrostatic spray system and the ground.This method greatly enhanced the adsorption performance under outdoor conditions that 16.7%droplets density increased on the target front,a nearly fourfold destiny increased on the target back compared with the conventional UAV spray system.The target back-to-front ratio of droplet density was improved from 6.1%to 25.7%,which validated the satisfactory performance of the developed system.展开更多
The coupling between open channel-based microchip electrophoresis and mass spectrometry via electrostatic spray ionization is proposed for in situ detection of fractionated analytes. Electrophoretic separation is perf...The coupling between open channel-based microchip electrophoresis and mass spectrometry via electrostatic spray ionization is proposed for in situ detection of fractionated analytes. Electrophoretic separation is performed in an open channel fabricated in a plastic substrate. The solvent of background electrolyte is evaporated from the open channel because of Joule heating during electrophoresis, leaving the dried electrophoretic bands to be directly analyzed by mass spectrometry via scanning electrostatic spray ionization. Proof-of-concept results are obtained with fluorescent dyes and antibiotics as the test samples, demonstrating an efficient on-chip detection platform based on the electrophoresis and electrostatic spray ionization mass spectrometry.展开更多
A simple, low-cost, and home-built electrostatic spray deposition (ESD) system with the stable cone-jet mode was used to deposit nickel oxide (NiO) thin films on glass substrates kept at temperature of 400 ℃ as t...A simple, low-cost, and home-built electrostatic spray deposition (ESD) system with the stable cone-jet mode was used to deposit nickel oxide (NiO) thin films on glass substrates kept at temperature of 400 ℃ as the primary precursor solution of 0.1 M concentration hydrated nickel chloride was dissolved in isopropyl alcohol. Electrical measurements showed that these films were of n-type conductivity while their resistance response to hydrogen flow in air ambient was varied by 2.81% with the rise and recovery time of 48 s and 40 s, respectively.展开更多
CuFe2O4 network,prepared via the electrostatic spray deposition technique,with high reversible capacity and long cycle lifetime for lithium ion battery anode material has been reported.The reversible capacity can be f...CuFe2O4 network,prepared via the electrostatic spray deposition technique,with high reversible capacity and long cycle lifetime for lithium ion battery anode material has been reported.The reversible capacity can be further enhanced by coating high electronic conductive polypyrrole(PPy).At the current density of 100mA·g-1.Li/CuFe2O4 electrode delivers a reversible capacity of 842.9 mAh·g-1 while the reversible capacity of Li/PPy-coated CuFe2O4 electrode increases up to 1106.7 mAh-g’.A high capacity of 640.7 mAhg"1 for the Li/PPy-coated CuFe2O4electrode is maintained in contrast of 398.9 mAh·g-1 for CuFe2O4 electrode after 60 cycles,which demonstrates good electrochemical performance of the composite due to the increase of electronic conductivity.The electrochemical impedance spectroscopy(EIS) further reveals that the Li/PPy-coated CuFe2O4 electrode has a lower charge transfer resistance than the Li/CuFe2C〉4 electrode.展开更多
Fine droplets with high adhesion can greatly improve the efficiency of atomization culture.Therefore,the development of a spray nozzle that can produce fine fog droplets with high adhesion is of great significance for...Fine droplets with high adhesion can greatly improve the efficiency of atomization culture.Therefore,the development of a spray nozzle that can produce fine fog droplets with high adhesion is of great significance for aeroponics.Compared to piezoelectric ultrasonic atomizer,Hartmann resonator low-frequency ultrasonic electrostatic atomizer has the advantages of large atomization volume and constant liquid chemical structure,but the droplet size is larger.High-speed gas can generate low-frequency ultrasonic vibration sound waves in Hartmann resonator.The frequency and intensity of sound waves determine the atomization performance of supersonic atomizer nozzle.However,very few research literatures can be found on how the structure and operating parameters of Hartmann resonator affect the atomization performance.In order to improve the atomization performance of ultrasonic atomizer,a two-stage Hartmann resonator low-frequency ultrasonic electrostatic atomizer was designed.The shrinkage-type Laval tube was designed by fluid mechanics theory,and the design results were verified by fluent software.The virtual orthogonal test method was used to optimize the structure parameters of two-stage resonator and spray test was carried out.The results showed that when the included angle between the two stage resonators was 80°,the diameter was 4.86 mm,the tube length ratio was 1.0 and the gas pressure was 0.5 MPa,the droplet size could reach 22.05μm.Additionally,compared with the traditional Hartmann cavity with 90°included angle,the droplet size was decreased by 63%.The annular electrode was used as the charging electrode,and Comsol Multiphysics software was used to simulate and calculate the deformation and crushing process of electrostatic droplets and the influence of different voltage,surface tension and droplet diameter on the droplet deformation rate.The results showed that:(1)the optimum charge range of the electrode ring was within 20 mm of the axial distance along the electrode ring.(2)The higher the voltage U,the smaller the surface tensionσ;the larger the droplet diameter d and the larger the droplet deformation rate.(3)The experimental results showed that the droplet size was inversely proportional to the gas pressure P0,electrostatic voltage U and spray height h.When the gas pressure and electrostatic voltage were 0.4 MPa and 18 kV,0.4 MPa and 18 kV,respectively,the droplet sizes were 7.8μm and 43.9μm respectively,the droplet size difference between the two conditions was 82.2%.展开更多
基金National Natural Science Foundation of China(No.2275150)。
文摘To investigate the process optimizationof Cu-en/AP composite microspheres preparation via electrostatic spraying,and to reveal the effects of droplet properties and flow rate variations on the experimental results during the electrostatic spraying process,the prepared process parameters of Cu-en/AP composite microspheres by electrostatic spray method under the orthogonal experimental design simulated by ANSYS(Fluent).The influence of flow rate,solvent ratio,and solid mass on the experimental results is examined using a controlled variable method.The results indicate that under the conditions of a flow rate of 2.67×10^(-3)kg/s an acetone-to-deionized water ratio of 1.5∶1.0,and a solid mass of 200 mg,the theoretical particle size of the composite microspheres can reach e nanoscale.Droplet trajectories in the electric field remain stable without significant deviation.The simulation results show that particle diameter decreases with increasing flow rate,with the trend leveling off around a flow rate of 1×10^(-3)kg/s.As the solvent ratio increases(with higher acetone content),particle diameter initially decreases,reaching a minimum around a ratio of 1.5∶1.0 before gradually increasing.Increasing the solid mass also reduces the particle diameter,with a linear increase in diameter observed at around 220 mg.Cu-en/AP composite microspheres with nanoscale dimensions were confirmed under these conditions by the final SEM images.
基金This work was supported by the National Research Foundation of South Korea(NRF)grants funded by the South Korean government(MEST)(No.2022R1A2C2004197,RS-2024-00407053 and RS-2023-00208448).
文摘While spray-drying has been widely utilized to improve the bioavailability of poorly water-soluble drugs,the outcomes often exhibit suboptimal particle size distribution and large particle sizes,limiting their effectiveness.In this study,we introduce electrostatic spraying as an advanced technology tailored for poorly water-soluble drugs,enabling the fabrication of nanoparticles with fine and uniform particle size distribution.Regorafenib(1 g),as a model drug,copovidone(5 g),and sodium dodecyl sulfate(0.1 g)were dissolved in 200 ml ethanol and subjected to conventional-spray-dryer and electrostatic spray dryer.The electrostatic spray-dried nanoparticles(ESDN)showed smaller particle sizes with better uniformity compared to conventional spray-dried nanoparticles(CSDN).ESDN demonstrated significantly enhanced solubility and rapid release in water.In vitro studies revealed that ESDN induced apoptosis in HCT-116 cells to a greater extent,exhibiting superior cytotoxicity compared to CSDN.Furthermore,ESDN substantially improved oral bioavailability and antitumor efficacy compared to CSDN.These findings suggest that ESD shows potential in developing enhanced drug delivery systems for poorly water-soluble drugs,effectively addressing the limitations associated with CSD methods.
基金The 2023 Nantong Social Livelihood Science and Technology Plan2023 Nantong Jianghai Talents Project+3 种基金2022 New Drugs and Platform Enhancement Project of the Yangtze Delta Drug Advanced Research Institute. Zhenjiang Science and Technology Pro ject (Grant No. SH2020048)China Postdoctoral Science Foundation (Gr ant No. 2020M681532)Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 2020Z209)Natural Science Research Pro jects of Universities in Jiangsu Province (Grant No. 20KJD350001)。
文摘In the present study,we employed electrostatic spray technology to fabricate mesoporous microspheres containing sodium hyaluronate(SHMM).This approach aimed to overcome a significant challenge in the formulation development process,specifically addressing the limited water-locking ability inherent to the double-helix structure of sodium hyaluronate(SH).Various parameters were systematically investigated,including the solvent employed,concentrations of SH and poly(ethylene oxide),electrospray flow rate,voltage settings,and needle diameter.Through systematic single-factor testing,we identified the optimal formulation process for generating SH microspheres characterized by favorable morphology and particle size.Additionally,a similar single-factor examination focused on the concentration of the pore-forming agent and the drying temperature,leading to the successful production of mesoporous microspheres with discernible pores.The porosity of the three distinct batches of mesoporous microspheres was consistently measured at 20.30%±1.51%.Moreover,all these microspheres displayed a negative surface potential when suspended in water,affirming their strong capacity to bind with positively charged protein drugs.These findings underscored the feasibility of drug loading through ion exchange in subsequent stages.Notably,the successful preparation of recombinant human interferonα-2b crosslinked mesoporous microspheres(rhIFNα-2b-SHCMM)was achieved,demonstrating both high entrapment efficiency and an enhanced drug loading capacity.
文摘There is an urgent need for new chemical application techniques and sprayers in Chinese orchard spraying.A new tractor-mounted automatic target detecting electrostatics,and air-assisted orchard sprayer was designed and developed to meet the demand of chemical pest control in orchards.This sprayer light weighted,highly efficient,reduces pesticide use and is friendly to the environment.The techniques of automatic target detecting,electrostatics,and air-assisted spraying were combined in this system.The electrostatically charged droplets are projected toward the target by the assistance of an air stream that increases the droplets penetration within canopy.Experimental results show that the new automatic target detecting orchard sprayer with an infrared sensor can save more than 50%to 75%of pesticides,improve the utilization rate(over 55%),control efficiency,and significantly reduce environmental pollution caused by the pesticide application.At the same time the key technological problems related to air-assisted low volume and electrostatic spraying were solved.
基金This study was financially supported by the Shandong Province Introduced the Top Talents‘One Case One Discussion’Special Funded Project(2018.01-2021.12)the Central Government Guided Local Science and Technology Development Special Fund‘Precision Agricultural Aviation Technology and Equipment Research and Development’Funded Project(2017.1-2019.12)+1 种基金the Shandong Province Dry Farming Intelligent Agricultural Machinery Equipment Collaborative Innovation Center Funded Project(2017.7-2020.12)the Zibo Science and Technology Development Plan Funding Project(Grant No.2018kj010073).
文摘In order to solve the problem of insufficient adsorption rate of droplets on the target back via aerial electrostatic spray,this study proposed a high-voltage electrostatic generator to charge the liquids in two isolated water tanks with positive and negative charges respectively.A charge transfer loop was developed in space between the aerial electrostatic spray system and the ground.This method greatly enhanced the adsorption performance under outdoor conditions that 16.7%droplets density increased on the target front,a nearly fourfold destiny increased on the target back compared with the conventional UAV spray system.The target back-to-front ratio of droplet density was improved from 6.1%to 25.7%,which validated the satisfactory performance of the developed system.
基金the Chinese Scholarship Council for financial support
文摘The coupling between open channel-based microchip electrophoresis and mass spectrometry via electrostatic spray ionization is proposed for in situ detection of fractionated analytes. Electrophoretic separation is performed in an open channel fabricated in a plastic substrate. The solvent of background electrolyte is evaporated from the open channel because of Joule heating during electrophoresis, leaving the dried electrophoretic bands to be directly analyzed by mass spectrometry via scanning electrostatic spray ionization. Proof-of-concept results are obtained with fluorescent dyes and antibiotics as the test samples, demonstrating an efficient on-chip detection platform based on the electrophoresis and electrostatic spray ionization mass spectrometry.
文摘A simple, low-cost, and home-built electrostatic spray deposition (ESD) system with the stable cone-jet mode was used to deposit nickel oxide (NiO) thin films on glass substrates kept at temperature of 400 ℃ as the primary precursor solution of 0.1 M concentration hydrated nickel chloride was dissolved in isopropyl alcohol. Electrical measurements showed that these films were of n-type conductivity while their resistance response to hydrogen flow in air ambient was varied by 2.81% with the rise and recovery time of 48 s and 40 s, respectively.
基金supported by the 973 Project of China(No.2011CB935901)the National Nature Science Foundations of China(No.21203111,91022033)
文摘CuFe2O4 network,prepared via the electrostatic spray deposition technique,with high reversible capacity and long cycle lifetime for lithium ion battery anode material has been reported.The reversible capacity can be further enhanced by coating high electronic conductive polypyrrole(PPy).At the current density of 100mA·g-1.Li/CuFe2O4 electrode delivers a reversible capacity of 842.9 mAh·g-1 while the reversible capacity of Li/PPy-coated CuFe2O4 electrode increases up to 1106.7 mAh-g’.A high capacity of 640.7 mAhg"1 for the Li/PPy-coated CuFe2O4electrode is maintained in contrast of 398.9 mAh·g-1 for CuFe2O4 electrode after 60 cycles,which demonstrates good electrochemical performance of the composite due to the increase of electronic conductivity.The electrochemical impedance spectroscopy(EIS) further reveals that the Li/PPy-coated CuFe2O4 electrode has a lower charge transfer resistance than the Li/CuFe2C〉4 electrode.
基金This work was financially supported by National Natural Science Foundation of China Program(Grant No.51975255)Jiangsu Agriculture Science and Technology Innovation Fund(Grant No.CX(18)3048)Priority Academic Program Development of Jiangsu Higher Education Institutions(Grant No.37(2014)).
文摘Fine droplets with high adhesion can greatly improve the efficiency of atomization culture.Therefore,the development of a spray nozzle that can produce fine fog droplets with high adhesion is of great significance for aeroponics.Compared to piezoelectric ultrasonic atomizer,Hartmann resonator low-frequency ultrasonic electrostatic atomizer has the advantages of large atomization volume and constant liquid chemical structure,but the droplet size is larger.High-speed gas can generate low-frequency ultrasonic vibration sound waves in Hartmann resonator.The frequency and intensity of sound waves determine the atomization performance of supersonic atomizer nozzle.However,very few research literatures can be found on how the structure and operating parameters of Hartmann resonator affect the atomization performance.In order to improve the atomization performance of ultrasonic atomizer,a two-stage Hartmann resonator low-frequency ultrasonic electrostatic atomizer was designed.The shrinkage-type Laval tube was designed by fluid mechanics theory,and the design results were verified by fluent software.The virtual orthogonal test method was used to optimize the structure parameters of two-stage resonator and spray test was carried out.The results showed that when the included angle between the two stage resonators was 80°,the diameter was 4.86 mm,the tube length ratio was 1.0 and the gas pressure was 0.5 MPa,the droplet size could reach 22.05μm.Additionally,compared with the traditional Hartmann cavity with 90°included angle,the droplet size was decreased by 63%.The annular electrode was used as the charging electrode,and Comsol Multiphysics software was used to simulate and calculate the deformation and crushing process of electrostatic droplets and the influence of different voltage,surface tension and droplet diameter on the droplet deformation rate.The results showed that:(1)the optimum charge range of the electrode ring was within 20 mm of the axial distance along the electrode ring.(2)The higher the voltage U,the smaller the surface tensionσ;the larger the droplet diameter d and the larger the droplet deformation rate.(3)The experimental results showed that the droplet size was inversely proportional to the gas pressure P0,electrostatic voltage U and spray height h.When the gas pressure and electrostatic voltage were 0.4 MPa and 18 kV,0.4 MPa and 18 kV,respectively,the droplet sizes were 7.8μm and 43.9μm respectively,the droplet size difference between the two conditions was 82.2%.