In this paper, the mechanism of yeast inactivation in low temperature atmospheric pressure helium, nitrogen and air plasmas generated by dielectric barrier discharge is analysed and compared. The results show that all...In this paper, the mechanism of yeast inactivation in low temperature atmospheric pressure helium, nitrogen and air plasmas generated by dielectric barrier discharge is analysed and compared. The results show that all the three gas plasmas have a high germicidal efficiency. The morphology of the yeast is observed by scanning electron microscopy, which reveals that the yeast treated in helium plasma is ruptured completely but there are only some flaws on the cell walls in the nitrogen and air plasma treated samples. Also, the flaws on the cell walls treated by air plasma are more significant than that by nitrogen treatment. Simultaneously, the pH values of the samples after 5 rain nitrogen and air plasma treatment have no remarkable change either, while the sample treated with helium plasma descends below 4.0, which is beyond the optimum one for the yeast's living environment. The difference in pH values may be caused by the treatment effect and the degree of the cell's rupture when the gas discharge plasma treatment is applied.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.10275010)
文摘In this paper, the mechanism of yeast inactivation in low temperature atmospheric pressure helium, nitrogen and air plasmas generated by dielectric barrier discharge is analysed and compared. The results show that all the three gas plasmas have a high germicidal efficiency. The morphology of the yeast is observed by scanning electron microscopy, which reveals that the yeast treated in helium plasma is ruptured completely but there are only some flaws on the cell walls in the nitrogen and air plasma treated samples. Also, the flaws on the cell walls treated by air plasma are more significant than that by nitrogen treatment. Simultaneously, the pH values of the samples after 5 rain nitrogen and air plasma treatment have no remarkable change either, while the sample treated with helium plasma descends below 4.0, which is beyond the optimum one for the yeast's living environment. The difference in pH values may be caused by the treatment effect and the degree of the cell's rupture when the gas discharge plasma treatment is applied.