The effect of frequencies of AC power supply on the quality of the electroslag-melted ingot is studied. The results show that with a decrease in the frequency, electromagnetic force becomes more violent, and the tempe...The effect of frequencies of AC power supply on the quality of the electroslag-melted ingot is studied. The results show that with a decrease in the frequency, electromagnetic force becomes more violent, and the temperature in the slag bath becomes more homogeneous, and therefore, the depth of molten metal pool is decreased; electrochemical reactions occur with the decrease in the frequency, and the atomic oxygen electrolyzed dissolves in the molten metal pool; the nonmetallic inclusions, which are distributed dispersively in the ingot, have an increased content, and their size is approximately in the range of 2--3 μm.展开更多
A new electroslag furnace with ultrasonic vibration introduced through water-cooled base plate was de- signed and the effects of ultrasonic power on the distribution of elements, compactness and carbides in the electr...A new electroslag furnace with ultrasonic vibration introduced through water-cooled base plate was de- signed and the effects of ultrasonic power on the distribution of elements, compactness and carbides in the electroslag remelting (ESR) ingots was investigated. The results showed that the distribution of elements on the entire excita- tion section changed with the change of ultrasonic power under experimental conditions. The statistical segregation of elements was minimum when the ultrasonic power was 500 W, whereas excessively high or excessively low power was not conducive to the uniform distribution of elements. Meanwhile, the compactness of ESR ingots gradually in- creased with the increase in ultrasonic power and distribution of compactness was the most uniform when ultrasonic power reached 500 W. Further increase in the ultrasonic power was not conducive to the improvement of compactness. The distribution characteristic of carbides was similar to the distribution of elements and compactness. The re- sults indicated that the ultrasonic vibration introduced through water-cooled base plate was advantageous in impro- ving solidification quality. However, this method needed reasonable ultrasonic power. Moreover, the effects of ultra- sonic power varied for different elements.展开更多
文摘The effect of frequencies of AC power supply on the quality of the electroslag-melted ingot is studied. The results show that with a decrease in the frequency, electromagnetic force becomes more violent, and the temperature in the slag bath becomes more homogeneous, and therefore, the depth of molten metal pool is decreased; electrochemical reactions occur with the decrease in the frequency, and the atomic oxygen electrolyzed dissolves in the molten metal pool; the nonmetallic inclusions, which are distributed dispersively in the ingot, have an increased content, and their size is approximately in the range of 2--3 μm.
基金Item Sponsored by National Natural Science Foundation of China(51274004,51574001)
文摘A new electroslag furnace with ultrasonic vibration introduced through water-cooled base plate was de- signed and the effects of ultrasonic power on the distribution of elements, compactness and carbides in the electroslag remelting (ESR) ingots was investigated. The results showed that the distribution of elements on the entire excita- tion section changed with the change of ultrasonic power under experimental conditions. The statistical segregation of elements was minimum when the ultrasonic power was 500 W, whereas excessively high or excessively low power was not conducive to the uniform distribution of elements. Meanwhile, the compactness of ESR ingots gradually in- creased with the increase in ultrasonic power and distribution of compactness was the most uniform when ultrasonic power reached 500 W. Further increase in the ultrasonic power was not conducive to the improvement of compactness. The distribution characteristic of carbides was similar to the distribution of elements and compactness. The re- sults indicated that the ultrasonic vibration introduced through water-cooled base plate was advantageous in impro- ving solidification quality. However, this method needed reasonable ultrasonic power. Moreover, the effects of ultra- sonic power varied for different elements.