Objective This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans(C.elegans).Methods In this study,the fermented barley protein LFBEP-C1 was prepared and test...Objective This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans(C.elegans).Methods In this study,the fermented barley protein LFBEP-C1 was prepared and tested for its potential anti-obesity effects on C.elegans.The worms were fed Escherichia coli OP50(E.coli OP50),glucose,and different concentrations of LFBEP-C1.Body size,lifespan,movement,triglyceride content,and gene expression were analyzed.The results were analyzed using ANOVA and Tukey's multiple comparison test.Results Compared with the model group,the head-swing frequency of C.elegans in the group of LFBEP-C1 at 20μg/mL increased by 33.88%,and the body-bending frequency increased by 27.09%.This indicated that LFBEP-C1 improved the locomotive ability of C.elegans.The average lifespan of C.elegans reached 13.55 days,and the body length and width of the C.elegans decreased after LFBEP-C1 intake.Additionally,LFBEP-C1 reduced the content of lipid accumulation and triglyceride levels.The expression levels of sbp-1,daf-2,and mdt-15 significantly decreased,while those of daf-16,tph-1,mod-1,and ser-4 significantly increased after LFBEP-C1 intake.Changes in these genes explain the signaling pathways that regulate lipid metabolism.Conclusion LFBEP-C1 significantly reduced lipid deposition in C.elegans fed a high-glucose diet and alleviated the adverse effects of a high-glucose diet on the development,lifespan,and exercise behavior of C.elegans.In addition,LFBEP-C1 regulated lipid metabolism mainly by mediating the expression of genes in the sterol regulatory element-binding protein,insulin,and 5-hydroxytryptamine signaling pathways.展开更多
Background:Gelsemium elegans Benth(G.elegans)is a poisonous perennial evergreen vine plant that has been applied in livestock production and veterinary clinical practice.Early studies found that the toxicity of G.eleg...Background:Gelsemium elegans Benth(G.elegans)is a poisonous perennial evergreen vine plant that has been applied in livestock production and veterinary clinical practice.Early studies found that the toxicity of G.elegans showed significant gender differences in rats,but the underlying reasons for this difference are still not well understood.Methods:In order to explore whether the gender differences in the toxicity of G.elegans are related to pharmacokinetic differences,based on the previous pharmacokinetic study of multiple components of G.elegans in male rats,this study used HPLC-MS/MS method established in the laboratory to conduct a pharmacokinetic study of multiple alkaloids in the plasma of female rats after a single gavage administration of G.elegans(dose of 0.1 g/kg).Results:Through detection,17 alkaloid components in the plasma of female rats were identified,and the pharmacokinetic parameters of 11 of these alkaloids were calculated.We find that in female rats.The T_(max)values were generally less than 0.5 h,and the T_(1/2)values exceeded 3 h,with the longest reaching up to 32.80 h half elimination time.Additionally,the C_(max)and AUC results indicated that female rats had generally higher absorption and exposure levels for most alkaloids.Conclusion:These results suggest that the reason for the differences in the toxicology of G.elegans may be related to the absorption and exposure of gelsemidine-type alkaloids in animals.展开更多
Objective To examine the important roles of microRNAs (miRNAs) in regulating amphid structure and function, we performed a computational analysis for the genetic loci required for the sensory perception and their po...Objective To examine the important roles of microRNAs (miRNAs) in regulating amphid structure and function, we performed a computational analysis for the genetic loci required for the sensory perception and their possibly corresponding miRNAs in C. elegans. Methods Total 55 genetic loci required for the amphid structure and function were selected. Sequence alignment was combined with E value evaluation to investigate and identify the possible corresponding miRNAs. Results Total 30 genes among the 55 genetic loci selected have their possible corresponding regulatory miRNA(s), and identified genes participate in the regulation of almost all aspects of amphid structure and function. In addition, our data suggest that both the amphid structure and the amphid functions might be regulated by a series of network signaling pathways. Moreover, the distribution of miRNAs along the 3' untranslated region (UTR) of these 30 genes exhibits different patterns. Conclusion We present the possible miRNA-mediated signaling pathways involved in the regulation of chemosensation and thermosensation by controlling the corresponding sensory neuron and interneuron functions. Our work will be useful for better understanding of the miRNA-mediated control of the chemotaxis and thermotaxis in C. elegans.展开更多
Objective To identify new genes required for neurosecretory control of aging in C. elegans. Methods In view of the importance of nervous system in aging regulation, we performed the screen for genes involved in the ag...Objective To identify new genes required for neurosecretory control of aging in C. elegans. Methods In view of the importance of nervous system in aging regulation, we performed the screen for genes involved in the aging regulation from genetic loci encoding synaptic proteins by lifespan assay and accumulation of lipofuscin autofluorescence. We further investigated the dauer formation phenotypes of their corresponding mutants and whether they were possibly up-regulated by the insulin-like signaling pathway. Results The genetic loci of unc-10, syd-2, hlb-1, dlk-1, mkk-4, scd- 2, snb-1, ric-4, nrx-1, unc-13, sbt-1 and unc-64 might be involved in the aging control. In addition, functions of unc-10, syd-2, hlb-1, dlk-1, mkk-4, scd-2, snb-1, ric-4 and nrx-1 in regulating aging may be opposite to those of unc-13, sbt-1 and unc-64. The intestinal autofluorescence assay further indicated that the identified long-lived and short-lived mutants were actually due to the suppressed or accelerated aging. Among the identified genes, syd-2, hlb-1, mkk-4, scd-2, snb-1, ric-4 and unc-64 were also involved in the control of dauer formation. Moreover, daf-2 mutation positively regulated the expression of syd-2 and hlb-1, and negatively regulated the expression of mkk-4, nrx-1, ric-4, sbt-1, rpm-1, unc-10, dlk- 1 and unc-13. The daf-16 mutation positively regulated the expression of syd-2 and hlb-1, and negatively regulated the expression of mkk-4, nrx-1, sbt-1, rpm-1, unc-10, dlk-1 and unc-13. Conclusion These data suggest the possibly important status of the synaptic transmission to the animal' s life-span control machinery, as well as the dauer formation control.展开更多
Objective To screen and identify genetic loci affecting the active zone formation in C. elegans. Methods A SYD-2::GFP reporter was constructed and used as an active zone marker for forward genetic screen to identify...Objective To screen and identify genetic loci affecting the active zone formation in C. elegans. Methods A SYD-2::GFP reporter was constructed and used as an active zone marker for forward genetic screen to identify genetic loci affecting the active zone formation. Results Eight isolated mutant alleles were characterized from 15,000 haploid genomes. The SYD-2::GFP phenotypes of these mutants are mainly reflected as the changes of number, morphology, distribution of puncta and the gaps appearance. Some mutants also exhibit visible behavioral or physical phenotypes, and aldicarb resistant or sensitive phenotypes. Conclusion These mutants provide the opportunity for further systematic research on the active zone formation and the neurotransmission.展开更多
Objective To investigate the toxic effect of environmental neurotoxin MPP^+ to C.elegans and identify the mechanisms that cause the toxicity.Methods Humanα-synuclein transgenic C.elegans was used as the animal model...Objective To investigate the toxic effect of environmental neurotoxin MPP^+ to C.elegans and identify the mechanisms that cause the toxicity.Methods Humanα-synuclein transgenic C.elegans was used as the animal model,the toxic effect of MPP^+ to dopamine(DA)neurons and the lifespan of worms was tested.The worms were feed with OP50 to determine whether ATP increase can rescue the worm from toxicity.ATP level and aberrant protein accumulation were analyzed in the MPP^+ treated worms with or without OP50 addition.Results We found that MPP^+ induced DA cell death and worm lethality,which could be prevented by OP50 treatment.OP50 exerted the protective effect by up-regulating ATP level,even though it also induced accumulation ofα-synuclein.Despite the undefined role of protein aggregation to the cell death,our results showed that the toxicity of MPP^+ was mainly caused by the ATP depletion in theα-synuclein transgenic C.elegans.Conclusion MPP^+ could induce DA neuronal death and worm lethality inα-synuclein transgenic C.elegans;Compared with the aggregation ofα-synuclein,the major cause of MPP^+ toxicity appeared due to ATP depletion.展开更多
Due to the large number of ionic liquids (ILs) and their potential environmental risk, assessing the toxicity of ILs by ecotoxicological experiment only is insufficient. Quantitative structure- activity relationship...Due to the large number of ionic liquids (ILs) and their potential environmental risk, assessing the toxicity of ILs by ecotoxicological experiment only is insufficient. Quantitative structure- activity relationship (QSAR) has been proven to be a quick and effective method to estimate the viscosity, melting points, and even toxicity of ILs. In this work, the LC50 values of 30 imidazolium-based ILs were determined with Caenorhabditis elegans as a model animal. Four suitable molecular descriptors were selected on the basis of genetic function approximation algorithm to construct a QSAR model with an R^2 value of 0.938. The predicted lgLC50 in this work are in agreement with the experimental values, indicating that the model has good stability and predictive ability. Our study provides a valuable model to predict the potential toxicity of ILs with different sub-structures to the environment and human health.展开更多
The nematode Caenorhabditis elegans is an attractive model organism to study the behavioral plasticity for its simple system and ability to respond to diverse environmental stimuli, such as touch, smell, taste and tem...The nematode Caenorhabditis elegans is an attractive model organism to study the behavioral plasticity for its simple system and ability to respond to diverse environmental stimuli, such as touch, smell, taste and temperature. Learning in C. elegans encompasses both non-associative learning and associative learning. Till now, themotaxis and chemotaxis are two major paradigms for associative learning and there are at least 6 forms of chemotaxis-mediated associative learning. Three research systems have also been explored to study the mechanism of learning choice in worms. This review will discuss the forms, research models, genetic and molecular regulation of learning and learning choice in C. elegans.展开更多
Whether the multi-biological toxicity from lead exposure could be transferred to progeny has not been clarified. In the present study, we explored the Caenorhabditis elegans to analyze the multiple toxicities from lea...Whether the multi-biological toxicity from lead exposure could be transferred to progeny has not been clarified. In the present study, we explored the Caenorhabditis elegans to analyze the multiple toxicities from lead exposure and their possibly transferable properties. The lead exposure could cause series of severe multi-biological defects with a concentration-dependent manner by affecting the endpoints of life span, development, reproduction and locomotion behaviors in nematodes. Moreover, most of these toxicities could be transferred to progeny from lead exposed animals and some of the defects in progeny appeared even more severe than in their parents, such as the body sizes and mean life spans. We summarized the defects caused by lead exposure into three groups according to their transferable properties or rescue patterns. That is, the defects caused by lead exposure could be largely, or partially, or became even more severe in progeny animals. Therefore, our results suggest that lead exposure can cause severely multi-biological defects, and most of these multiple toxicities can be considered as transferable for exposed animals in C. elegans.展开更多
Locomotion behaviors are susceptible to disruption by a broad spectrum of chemicals and environmental stresses. However, no systematic testing of locomotion behavior defects induced by metal exposure has been conducte...Locomotion behaviors are susceptible to disruption by a broad spectrum of chemicals and environmental stresses. However, no systematic testing of locomotion behavior defects induced by metal exposure has been conducted in the model organism of nematode Caenorhabditis elegans. In this study, the acute toxicity from heavy metal exposure on the locomotion behaviors was analyzed in nematodes. Endpoints of head thrash, body bend, forward turn, backward turn, and Omega/U turn were chosen to evaluate the locomotio...展开更多
We examined the possible multiple defects induced by acute and prolonged exposure to high levels of manganese(Mn) solution by monitoring the endpoints of lifespan,development,reproduction,and stress response.Our dat...We examined the possible multiple defects induced by acute and prolonged exposure to high levels of manganese(Mn) solution by monitoring the endpoints of lifespan,development,reproduction,and stress response.Our data suggest that acute exposure(6 h) to Mn did not cause severe defects of life span,development,and reproduction,similarly,no significant defect could be found in animals exposed to a low concentration of Mn(2.5 μmol/L) for 48 h.In contrast,prolonged exposure(48 h) to high Mn concentrations(75 and 200 μmol/L) resulted in significant defects of life span,development,and reproduction,as well as the increase of the percentage of population with hsp-16.2::gfp expression indicating the obvious induction of stress responses in exposed animals.Moreover,prolonged exposure(48 h) to high concentrations(75 and 200 μmol/L) of Mn decreased the expression levels of antioxidant genes of sod-1,sod-2,sod-3,and sod-4 compared to control.Therefore,prolonged exposure to high concentrations of Mn will induce the severe defects of life span,development,and reproduction in nematodes possibly by affecting the stress response and expression of antioxidant genes in Caenorhabditis elegans.展开更多
基金supported by the priority academic program development of Jiangsu Higher education institutionsthe National Natural Science Foundation of China [31801538, 32072200]China Postdoctoral Science Foundation[2019M651747].
文摘Objective This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans(C.elegans).Methods In this study,the fermented barley protein LFBEP-C1 was prepared and tested for its potential anti-obesity effects on C.elegans.The worms were fed Escherichia coli OP50(E.coli OP50),glucose,and different concentrations of LFBEP-C1.Body size,lifespan,movement,triglyceride content,and gene expression were analyzed.The results were analyzed using ANOVA and Tukey's multiple comparison test.Results Compared with the model group,the head-swing frequency of C.elegans in the group of LFBEP-C1 at 20μg/mL increased by 33.88%,and the body-bending frequency increased by 27.09%.This indicated that LFBEP-C1 improved the locomotive ability of C.elegans.The average lifespan of C.elegans reached 13.55 days,and the body length and width of the C.elegans decreased after LFBEP-C1 intake.Additionally,LFBEP-C1 reduced the content of lipid accumulation and triglyceride levels.The expression levels of sbp-1,daf-2,and mdt-15 significantly decreased,while those of daf-16,tph-1,mod-1,and ser-4 significantly increased after LFBEP-C1 intake.Changes in these genes explain the signaling pathways that regulate lipid metabolism.Conclusion LFBEP-C1 significantly reduced lipid deposition in C.elegans fed a high-glucose diet and alleviated the adverse effects of a high-glucose diet on the development,lifespan,and exercise behavior of C.elegans.In addition,LFBEP-C1 regulated lipid metabolism mainly by mediating the expression of genes in the sterol regulatory element-binding protein,insulin,and 5-hydroxytryptamine signaling pathways.
基金supported by the National Natural Science Foundation of China(No.31972737).
文摘Background:Gelsemium elegans Benth(G.elegans)is a poisonous perennial evergreen vine plant that has been applied in livestock production and veterinary clinical practice.Early studies found that the toxicity of G.elegans showed significant gender differences in rats,but the underlying reasons for this difference are still not well understood.Methods:In order to explore whether the gender differences in the toxicity of G.elegans are related to pharmacokinetic differences,based on the previous pharmacokinetic study of multiple components of G.elegans in male rats,this study used HPLC-MS/MS method established in the laboratory to conduct a pharmacokinetic study of multiple alkaloids in the plasma of female rats after a single gavage administration of G.elegans(dose of 0.1 g/kg).Results:Through detection,17 alkaloid components in the plasma of female rats were identified,and the pharmacokinetic parameters of 11 of these alkaloids were calculated.We find that in female rats.The T_(max)values were generally less than 0.5 h,and the T_(1/2)values exceeded 3 h,with the longest reaching up to 32.80 h half elimination time.Additionally,the C_(max)and AUC results indicated that female rats had generally higher absorption and exposure levels for most alkaloids.Conclusion:These results suggest that the reason for the differences in the toxicology of G.elegans may be related to the absorption and exposure of gelsemidine-type alkaloids in animals.
文摘Objective To examine the important roles of microRNAs (miRNAs) in regulating amphid structure and function, we performed a computational analysis for the genetic loci required for the sensory perception and their possibly corresponding miRNAs in C. elegans. Methods Total 55 genetic loci required for the amphid structure and function were selected. Sequence alignment was combined with E value evaluation to investigate and identify the possible corresponding miRNAs. Results Total 30 genes among the 55 genetic loci selected have their possible corresponding regulatory miRNA(s), and identified genes participate in the regulation of almost all aspects of amphid structure and function. In addition, our data suggest that both the amphid structure and the amphid functions might be regulated by a series of network signaling pathways. Moreover, the distribution of miRNAs along the 3' untranslated region (UTR) of these 30 genes exhibits different patterns. Conclusion We present the possible miRNA-mediated signaling pathways involved in the regulation of chemosensation and thermosensation by controlling the corresponding sensory neuron and interneuron functions. Our work will be useful for better understanding of the miRNA-mediated control of the chemotaxis and thermotaxis in C. elegans.
文摘Objective To identify new genes required for neurosecretory control of aging in C. elegans. Methods In view of the importance of nervous system in aging regulation, we performed the screen for genes involved in the aging regulation from genetic loci encoding synaptic proteins by lifespan assay and accumulation of lipofuscin autofluorescence. We further investigated the dauer formation phenotypes of their corresponding mutants and whether they were possibly up-regulated by the insulin-like signaling pathway. Results The genetic loci of unc-10, syd-2, hlb-1, dlk-1, mkk-4, scd- 2, snb-1, ric-4, nrx-1, unc-13, sbt-1 and unc-64 might be involved in the aging control. In addition, functions of unc-10, syd-2, hlb-1, dlk-1, mkk-4, scd-2, snb-1, ric-4 and nrx-1 in regulating aging may be opposite to those of unc-13, sbt-1 and unc-64. The intestinal autofluorescence assay further indicated that the identified long-lived and short-lived mutants were actually due to the suppressed or accelerated aging. Among the identified genes, syd-2, hlb-1, mkk-4, scd-2, snb-1, ric-4 and unc-64 were also involved in the control of dauer formation. Moreover, daf-2 mutation positively regulated the expression of syd-2 and hlb-1, and negatively regulated the expression of mkk-4, nrx-1, ric-4, sbt-1, rpm-1, unc-10, dlk- 1 and unc-13. The daf-16 mutation positively regulated the expression of syd-2 and hlb-1, and negatively regulated the expression of mkk-4, nrx-1, sbt-1, rpm-1, unc-10, dlk-1 and unc-13. Conclusion These data suggest the possibly important status of the synaptic transmission to the animal' s life-span control machinery, as well as the dauer formation control.
文摘Objective To screen and identify genetic loci affecting the active zone formation in C. elegans. Methods A SYD-2::GFP reporter was constructed and used as an active zone marker for forward genetic screen to identify genetic loci affecting the active zone formation. Results Eight isolated mutant alleles were characterized from 15,000 haploid genomes. The SYD-2::GFP phenotypes of these mutants are mainly reflected as the changes of number, morphology, distribution of puncta and the gaps appearance. Some mutants also exhibit visible behavioral or physical phenotypes, and aldicarb resistant or sensitive phenotypes. Conclusion These mutants provide the opportunity for further systematic research on the active zone formation and the neurotransmission.
文摘Objective To investigate the toxic effect of environmental neurotoxin MPP^+ to C.elegans and identify the mechanisms that cause the toxicity.Methods Humanα-synuclein transgenic C.elegans was used as the animal model,the toxic effect of MPP^+ to dopamine(DA)neurons and the lifespan of worms was tested.The worms were feed with OP50 to determine whether ATP increase can rescue the worm from toxicity.ATP level and aberrant protein accumulation were analyzed in the MPP^+ treated worms with or without OP50 addition.Results We found that MPP^+ induced DA cell death and worm lethality,which could be prevented by OP50 treatment.OP50 exerted the protective effect by up-regulating ATP level,even though it also induced accumulation ofα-synuclein.Despite the undefined role of protein aggregation to the cell death,our results showed that the toxicity of MPP^+ was mainly caused by the ATP depletion in theα-synuclein transgenic C.elegans.Conclusion MPP^+ could induce DA neuronal death and worm lethality inα-synuclein transgenic C.elegans;Compared with the aggregation ofα-synuclein,the major cause of MPP^+ toxicity appeared due to ATP depletion.
基金This work was supported by the National Natural Science Foundation of China (No.21477121), and the Fundamental Research Funds for the Central Universities for the support of this work. The numerical calculations were performed on the super computing system in the Supercomputing Center at the University of Science and Technology of China.
文摘Due to the large number of ionic liquids (ILs) and their potential environmental risk, assessing the toxicity of ILs by ecotoxicological experiment only is insufficient. Quantitative structure- activity relationship (QSAR) has been proven to be a quick and effective method to estimate the viscosity, melting points, and even toxicity of ILs. In this work, the LC50 values of 30 imidazolium-based ILs were determined with Caenorhabditis elegans as a model animal. Four suitable molecular descriptors were selected on the basis of genetic function approximation algorithm to construct a QSAR model with an R^2 value of 0.938. The predicted lgLC50 in this work are in agreement with the experimental values, indicating that the model has good stability and predictive ability. Our study provides a valuable model to predict the potential toxicity of ILs with different sub-structures to the environment and human health.
文摘The nematode Caenorhabditis elegans is an attractive model organism to study the behavioral plasticity for its simple system and ability to respond to diverse environmental stimuli, such as touch, smell, taste and temperature. Learning in C. elegans encompasses both non-associative learning and associative learning. Till now, themotaxis and chemotaxis are two major paradigms for associative learning and there are at least 6 forms of chemotaxis-mediated associative learning. Three research systems have also been explored to study the mechanism of learning choice in worms. This review will discuss the forms, research models, genetic and molecular regulation of learning and learning choice in C. elegans.
基金Project supported by the Southeast University Foundation for Excellent Young Scholars(No.4023001013)
文摘Whether the multi-biological toxicity from lead exposure could be transferred to progeny has not been clarified. In the present study, we explored the Caenorhabditis elegans to analyze the multiple toxicities from lead exposure and their possibly transferable properties. The lead exposure could cause series of severe multi-biological defects with a concentration-dependent manner by affecting the endpoints of life span, development, reproduction and locomotion behaviors in nematodes. Moreover, most of these toxicities could be transferred to progeny from lead exposed animals and some of the defects in progeny appeared even more severe than in their parents, such as the body sizes and mean life spans. We summarized the defects caused by lead exposure into three groups according to their transferable properties or rescue patterns. That is, the defects caused by lead exposure could be largely, or partially, or became even more severe in progeny animals. Therefore, our results suggest that lead exposure can cause severely multi-biological defects, and most of these multiple toxicities can be considered as transferable for exposed animals in C. elegans.
基金the Southeast Uni-versity Foundation for Excellent Young Scholars (No.4023001013)the NIH,National Center for Foundation from Research Resource,USA
文摘Locomotion behaviors are susceptible to disruption by a broad spectrum of chemicals and environmental stresses. However, no systematic testing of locomotion behavior defects induced by metal exposure has been conducted in the model organism of nematode Caenorhabditis elegans. In this study, the acute toxicity from heavy metal exposure on the locomotion behaviors was analyzed in nematodes. Endpoints of head thrash, body bend, forward turn, backward turn, and Omega/U turn were chosen to evaluate the locomotio...
基金supported by the National Natural Science Foundation of China (No. 30771113, 30870810)the Program for New Century Excellent Talents in University
文摘We examined the possible multiple defects induced by acute and prolonged exposure to high levels of manganese(Mn) solution by monitoring the endpoints of lifespan,development,reproduction,and stress response.Our data suggest that acute exposure(6 h) to Mn did not cause severe defects of life span,development,and reproduction,similarly,no significant defect could be found in animals exposed to a low concentration of Mn(2.5 μmol/L) for 48 h.In contrast,prolonged exposure(48 h) to high Mn concentrations(75 and 200 μmol/L) resulted in significant defects of life span,development,and reproduction,as well as the increase of the percentage of population with hsp-16.2::gfp expression indicating the obvious induction of stress responses in exposed animals.Moreover,prolonged exposure(48 h) to high concentrations(75 and 200 μmol/L) of Mn decreased the expression levels of antioxidant genes of sod-1,sod-2,sod-3,and sod-4 compared to control.Therefore,prolonged exposure to high concentrations of Mn will induce the severe defects of life span,development,and reproduction in nematodes possibly by affecting the stress response and expression of antioxidant genes in Caenorhabditis elegans.