期刊文献+
共找到14,224篇文章
< 1 2 250 >
每页显示 20 50 100
Geochronology and Geochemistry of Ore-related Granitoids in the Giant Gariatong Rb Deposit,Tibet and Implications for Rb Metallogeny in China 被引量:1
1
作者 LIN Bin TANG Juxing +8 位作者 TANG Pan SUN Yan QI Jing MSANTOSH XIE Jinling DENG Shilin LI Faqiao XIE Fuwei ZHOU Aorigele 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第1期83-103,共21页
Rubidium(Rb)deposits mostly occur in the South China and Central Asia orogenic belts and are often closely associated with highly differentiated granites.This study investigates a newly-discovered giant Rb deposit at ... Rubidium(Rb)deposits mostly occur in the South China and Central Asia orogenic belts and are often closely associated with highly differentiated granites.This study investigates a newly-discovered giant Rb deposit at Gariatong in the Central Lhasa terrane in Tibet.Detailed field studies and logging data revealed that the Rb mineralization mainly occurs in monzogranite and is related to greisenization.LA-ICP-MS U-Pb dating of zircon yielded ages of 19.1±0.2 Ma and 19.0±0.2 Ma for greisenized monzogranite and fresh monzogranite,respectively.The monzogranites are characterized as strongly peraluminous,with high contents of SiO2,Al2O3,K2O and Na2O as well as a high differentiation index.They are enriched in light rare earth and large ion lithophile elements with significant negative Eu anomalies and depleted high fieldstrength elements.Petrological and geochemical features of these ore-related monzogranites suggest that they are highly fractionated S-type granites,derived from remelting of crustal materials in a post-collisional setting.The geochemistry of zircon and apatite points to a low oxygen fugacity of the ore-related monzogranite during the magma’s evolution.The discovery of the Gariatong Rb deposit suggests that the Central Lhasa terrane may be an important region for rare metal mineralization. 展开更多
关键词 LA-ICP-MS U-Pb dating geochemistry Rb metallogeny Gariatong TIBET
下载PDF
Mineral Geochemistry of Apatite in the Jiama PorphyrySkarn Deposit,Tibet and its Geological Significance
2
作者 YANG Yang TANG Juxing +8 位作者 ZHANG Zebin TANG Pan XIE Fuwei RAN Fengqin YANG Zongyao YANG Huaichao BAI Yun SUN Miao QI Jing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期399-415,共17页
The Jiama deposit,a significant porphyry-skarn-type copper polymetallic deposit located within the Gangdese metallogenic belt in Tibet,China,exemplifies a typical porphyry metallogenic system.However,the mineral chemi... The Jiama deposit,a significant porphyry-skarn-type copper polymetallic deposit located within the Gangdese metallogenic belt in Tibet,China,exemplifies a typical porphyry metallogenic system.However,the mineral chemistry of its accessory minerals remains under-examined,posing challenges for resource assessment and ore prospecting.Utilizing electron microprobe analysis and LA-ICP-MS analysis,this study investigated the geochemical characteristics of apatite in ore-bearing granite and monzogranite porphyries,as well as granodiorite,quartz diorite,and dark diorite porphyries in the deposit.It also delved into the diagenetic and metallogenic information from these geochemical signatures.Key findings include:(1)The SiO_(2) content,rare earth element(REE)contents,and REE partition coefficients of apatite indicate that the dark diorite porphyry possibly does not share a cogenetic magma source with the other four types of porphyries;(2)the volatile F and Cl contents in apatite,along with their ratio,indicate the Jiama deposit,formed in a collisional setting,demonstrates lower Cl/F ratios in apatite than the same type of deposits formed in a subduction environment;(3)compared to non-ore-bearing rock bodies in other deposits formed in a collisional setting,apatite in the Jiama deposit exhibits lower Ce and Ga contents.This might indicate that rock bodies in the Jiama deposit have higher oxygen fugacity.Nevertheless,the marginal variation in oxygen fugacity between ore-bearing and non-ore-bearing rock bodies within the deposit suggests oxygen fugacity may not serve as the decisive factor in the ore-hosting potential of rock bodies in the Jiama deposit. 展开更多
关键词 APATITE METALLOGENESIS mineral geochemistry PORPHYRY JIAMA TIBET
下载PDF
Bulk geochemistry,Rb-Sr,Sm-Nd,and stable O-H isotope systematics of the Metzimevin high-grade iron ore deposit,Mbalam iron ore district,southern Cameroon
3
作者 Samndong Cyril Tufoin Cheo Emmanuel Suh +1 位作者 Tabod Charles Tabod George Lemewihbwen Ngiamte 《Acta Geochimica》 EI CAS CSCD 2024年第4期677-706,共30页
Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore d... Bulk geochemistry,Sr,Nd,and O-H isotope systematics are reported for the first time on banded iron formation(BIF)-hosted high-grade iron ore at the northwestern segment of Congo Craton(CC).Located in Mbalam iron ore district,Southern Cameroon,Metzimevin iron ore deposit is a hematite-magnetite BIF system,dominated by SiO_(2)+Fe_(2)O_(3)(97.1 to 99.84 wt%),with low concentrations of clastic elements e.g.,Al_(2)O_(3),TiO_(2),and HFSE,depicting a nearly pure chemical precipitate.The REE+Y signature of the iron deposit displays strong positive Eu anomaly,strong negative Ce anomaly,and chondritic to superchondritic Y/Ho ratios,suggestive of formation by mixed seawater-high temperature hydrothermal fluids in oxidising environment.The^(87)Sr/^(86)Sr ratios of the BIF are higher than the maximum^(87)Sr/^(86)Sr evolution curves for all Archean reservoirs(bulk silicate earth,Archean crust and Archean seawater),indicating involvement of continentally-derived components during BIF formation and alteration.TheƐ_(Nd)(t)(+2.26 to+3.77)and Nd model age indicate that chemical constituents for the BIF were derived from undifferentiated crustal source,between 3.002 and 2.88 Ga.The variable and diverse O and H isotope data(−1.9‰to 17.3‰and−57‰to 136‰respectively)indicate that the Metzimevin iron ore formed initially from magmatic plumes and later enriched by magmatic-metamorphic-modified meteoric fluids.Mass balance calculations indicate mineralisation by combined leaching and precipitation,with an average iron enrichment factor of>2.67 and SiO_(2)depletion factor of>0.99.This is associated with an overall volume reduction of 28.27%,reflecting net leaching and volume collapse of the BIF protholith. 展开更多
关键词 Bulk geochemistry RB-SR SM-ND Mitzimevin High-grade iron ore
下载PDF
Geochemistry, zircon U–Pb geochronology, and Hf isotopes of S-type granite in the Baoshan block, constraints on the age and evolution of the Proto-Tethys
4
作者 Jianjun Zhang Chuanlong Mou +3 位作者 Chendong Liu Yong Zhang Ting Chen Hualiang Li 《Acta Geochimica》 EI CAS CSCD 2024年第1期40-58,共19页
Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkali... Geochemistry, zircon U–Pb geochronology, and Hf isotope data for the Early Paleozoic granites in the Baoshan Block reveal the Early Paleozoic tectonic evolution of the Proto-Tethys. The samples are high-K, calcalkaline, strongly peraluminous rocks with A/CNK values of 1.37–1.46, are enriched in SiO2, K2O, and Rb, and are depleted in Nb, P, Ti, Eu, and heavy rare earth elements,which indicates the crystallization fractionation of the granitic magma. Zircon U–Pb dating indicates that they formed in ca. 480 Ma. The Nansa granites have εHf(t) values ranging from-16.04 to 4.36 with corresponding TC DMages of 2.10–0.81 Ga, which suggests the magmas derived from the partial melting of ancient metasedimentary with minor involvement of mantle-derived components. A synthesis of data for the Early Paleozoic igneous rocks in the Baoshan block and adjacent(Tengchong,Qiangtang, Sibumasu, Himalaya, etc.) blocks indicates that these blocks were all aligned along the proto-Tethyan margin of East Gondwana in the Early Paleozoic. The Early Paleozoic S-type granites from Nansa were generated in a high-temperature and low-pressure(HTLP) extensional tectonic setting, which resulted from Andean-type orogeny instead of the final assembly of Gondwana or crustal extension in a non-arc environment. In certain places, an expanding environment may exist in opposition to the tectonic backdrop of the lithosphere’s thickening and shortening, leading the crust to melt and decompress,mantle-derived materials to mix, and a small quantity of peraluminous granite to emerge. 展开更多
关键词 Baoshan block Early Paleozoic GRANITE geochemistry ZIRCON GEOCHRONOLOGY Hf isotope
下载PDF
Climate and Soil Geochemistry Influence the Soil Organic Carbon Content in Drylands of the Songliao Plain,Northeast China
5
作者 LIU Kai DAI Huimin +2 位作者 SONG Yunhong LIANG Shuai YANG Zhongfang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第5期1394-1403,共10页
The understanding of the spatial distribution of soil organic carbon(SOC)and its influencing factors is crucial for comprehending the global carbon cycle.However,the impact of soil geochemical and climatic conditions ... The understanding of the spatial distribution of soil organic carbon(SOC)and its influencing factors is crucial for comprehending the global carbon cycle.However,the impact of soil geochemical and climatic conditions on SOC remains limited,particularly in dryland farming areas.In this study,we aimed to enhance the understanding of the factors influencing the distribution of SOC in the drylands of the Songliao Plain,Northeast China.A dataset comprising 35,188 measured soil samples was used to map the SOC distribution in the region.Multiple linear regression(MLR)and random forest models(RFM)were employed to assess the importance of driving indicators for SOC.We also carried out partial correlation and path analyses to further investigate the relationship between climate and geochemistry.The SOC content in dryland soils of the Songliao Plain ranged from 0.05%to 11.63%,with a mean value of 1.47%±0.90%.There was a notable increasing trend in SOC content from the southwest to the northeast regions.The results of MLR and RFM revealed that temperature was the most critical factor,demonstrating a significant negative correlation with SOC content.Additionally,iron oxide was the most important soil geochemical indicator affecting SOC variability.Our research further suggested that climate may exert an indirect influence on SOC concentrations through its effect on geochemical properties of soil.These insights highlight the importance of considering both the direct and indirect impact of climate in predicting the SOC under future climate change. 展开更多
关键词 soil organic carbon climate change soil geochemistry Northeast China
下载PDF
Petrology,geochemistry,and crystal size distribution of the basaltic andesite-dacite association at Mt.Sumbing,Central Java,Indonesia:Insights to magma reservoir dynamics and petrogenesis
6
作者 Indranova Suhendro Endra Yuliawan +6 位作者 Revina Fitri Zen Zulfa Yogi Rahmawati Pandu Eka Priyana Sonna Diwijaya Muhammad Alsamtu Tita Sabila Pratama Suhartono Andre Jonathan Gammanda Adhny El Zamzamy Latief 《Acta Geochimica》 EI CAS CSCD 2024年第5期838-855,共18页
Ten rock samples consisting of one pyroclastic density current(PDC1)deposit,seven lava flows(LF1–7),and two summit lava domes(LD1,2)were studied to understand the petrogenesis and magma dynamics at Mt.Sumbing.The str... Ten rock samples consisting of one pyroclastic density current(PDC1)deposit,seven lava flows(LF1–7),and two summit lava domes(LD1,2)were studied to understand the petrogenesis and magma dynamics at Mt.Sumbing.The stratigraphy is arranged as LF1,PDC1,LF2,LF3,LF4,LF5,LF6,LF7,LD1,and LD2;furthermore,these rocks were divided into two types.TypeⅠ,observed in the oldest(LF1)sample,has poor MgO and high Ba/Nb,Th/Yb and Sr.The remaining samples(PDC1–LD2)represent typeⅡ,characterized by high MgO and low Ba/Nb,Th/Yb and Sr values.We suggest that type I is derived from AOC(altered oceanic crust)-rich melts that underwent significant crustal assimilation,while typeⅡoriginates from mantle-rich melts with less significant crustal assimilation.The early stage of typeⅡmagma(PDC1–LF3)was considered a closed system,evolving basaltic andesite into andesite(55.0–60.2 wt%SiO_(2))with a progressively increasing phenocryst(0.30–0.48φ_(PC))and decreasing crystal size distribution(CSD)slope(from-3.9 to-2.9).The evidence of fluctuating silica and phenocryst contents(between 55.9–59.7 wt%and 0.25–0.41φ_(PC),respectively),coupled with the kinked and steep(from-5.0 to-3.3)CSD curves imply the interchanging condition between open(i.e.,magma mixing)and closed magmatic systems during the middle stage(LF4–LF6).Finally,it underwent to closed system again during the final stage(LF7–LD2)because the magma reached dacitic composition(at most 68.9 wt%SiO_(2))with abundant phenocryst(0.38–0.45φ_(PC))and gentle CSD slope(from-4.1 to-1.2). 展开更多
关键词 Sumbing Whole-rock geochemistry PETROGENESIS FRACTIONATION Magma mixing Crystal size distribution
下载PDF
Texture and Geochemistry of Multi-stage Hydrothermal Scheelite in the Mamupu Cu-Au-Mo(-W)Deposit,Eastern Tibet:Implications for Tungsten Mineralization in the Yulong Belt
7
作者 ZHANG Xiaoxu TANG Juxing +7 位作者 LIN Bin WANG Qin HE Liang YAN Gang SHAO Rui WU Qiang DU Qiu ZHAXI Pingcuo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第3期701-716,共16页
Multistage tungsten mineralization was recently discovered in the Mamupu copper-polymetallic deposit in the southern Yulong porphyry copper belt(YPCB),Tibet.This study reports the results of cathodoluminescence,trace ... Multistage tungsten mineralization was recently discovered in the Mamupu copper-polymetallic deposit in the southern Yulong porphyry copper belt(YPCB),Tibet.This study reports the results of cathodoluminescence,trace element and Sr isotope analyses of Mamupu scheelite samples,undertaken in order to better constrain the mechanism of W mineralization and the sources of the ore-forming fluids.Three different types of scheelite are identified in the Mamupu deposit:scheelite A(Sch A)mainly occurs in breccias during the prograde stage,scheelite B(Sch B)forms in the chlorite-epidote alteration zone in the retrograde stage,while scheelite C(Sch C)occurs in distal quartz sulfide veins.The extremely high Mo content and negative Eu anomaly in Sch A represent high oxygen fugacity in the prograde stage.Compared with ore-related porphyries,Sch A has a similar REE pattern,but with higher ΣREE,more depleted HREE and slightly lower(^(87)Sr/^(86)Sr)i ratios.These features suggest that Sch A is genetically related to ore-related porphyries,but extensive interaction with carbonate surrounding rocks affects the final REE and Sr isotopic composition.Sch B shows dark(Sch B-I)and light(Sch B-II)domains under CL imaging.From Sch B-I to Sch B-II,LREEs are gradually depleted,with MREEs being gradually enriched.Sch C has the highest LREE/HREE ratio,which indicates that it inherited the geochemical characteristics of fluids after the precipitation of HREE-rich minerals,such as diopside and garnet,in the early prograde stage.The Mo content in Sch B and Sch C gradually decreased,indicating that the oxygen fugacity of the fluids changed from oxidative in the early stages to reductive in the later,the turbulent Eu anomaly in Sch B and Sch C indicating that the Eu anomaly in the Mamupu scheelite is not solely controlled by oxygen fugacity.The extensive interaction of magmatic-hydrothermal fluids and carbonate provides the necessary Ca^(2+)for the precipitation of scheelite in the Mamupu deposit. 展开更多
关键词 SCHEELITE geochemistry Mamupu Cu deposit Yulong porphyry copper belt eastern Tibet
下载PDF
The discovery of Late Triassic hypabyssal mafic dykes in the Huozhou complex and their geological significance:Evidence from petrology,geochemistry,and geochronology
8
作者 Haiyan Liu Chong Peng 《Acta Geochimica》 EI CAS CSCD 2024年第6期1013-1036,共24页
The Huozhou complex in the Trans-North China Orogen exhibits two events of mafic magmatism(separated by ca.700 Ma):Neoproterozoic(920±15 Ma)Shimenyu diabase and Late Triassic(217±2.5 Ma)Xingtangsi diabase.In... The Huozhou complex in the Trans-North China Orogen exhibits two events of mafic magmatism(separated by ca.700 Ma):Neoproterozoic(920±15 Ma)Shimenyu diabase and Late Triassic(217±2.5 Ma)Xingtangsi diabase.Investigations have focused on systematic petrology,zircon U-Pb dating,Lu-Hf isotopes,and lithogeochemistry.The research findings indicate that the Late Triassic Xingtangsi diabase of the Huozhou complex can be classified as a transitional type between intermediate and mafic rocks based on their SiO_(2)content.This classification is supported by an average SiO_(2)content of 53.94%,ranging from 53.33%to 54.28%.In the Zr/TiO_(2)vs.Ce diagram,all samples lie within the range of basalt.The zircons from the Late Triassic Xingtangsi diabase have lowε_(Hf)(t)values ranging from-12.7 to-8.7,with an average of-11.1.Additionally,the single-stage model age T_(DM1)is estimated to be between 1207 and 1701 Ma.These findings suggest that the magma responsible for the dyke originated from either partial melting or an enriched mantle source inside the Meso-Proterozoic lithospheric mantle.The elevated concentrations of Th(thorium)and LREEs(light rare earth elements),as well as the Th/Yb and Th/Nb ratios,suggest the potential incorporation of subducted sediments within the magma source region.The rock displays negative Nb,Ta,Zr,Hf,and Ti anomalies.These geochemical attributes align with the distinctive traits observed in volcanic rocks found within island arcs.The formation of the Late Triassic Xingtangsi diabase is likely associated with the geological context of an arc setting,which arises from the collision between the Yangtze plate and the North China Craton. 展开更多
关键词 Trans-North China Orogen Huozhou complex geochemistry Hf isotope North China Craton
下载PDF
Mineralogy and whole-rock geochemistry of the Oligocene Barail Group of rocks of Belt of Schuppen,Northeast India:Implications for tectono-provenance and paleo-weathering
9
作者 Manash Pratim Gogoi Yunpeng Dong +6 位作者 Pradip Borgohain Devojit Bezbaruah Arvind Pandey Yadav Krishna Gogoi Garima Konwar Gautam Raj Bawri Bubul Bharali 《Acta Geochimica》 EI CAS CSCD 2024年第5期904-932,共29页
The petrographic and geochemical attributes of the Oligocene Barail Group of rocks are used to decipher the likely source area(s)or tectonic domains,as this sequence of rocks was deposited in a foreland basin governed... The petrographic and geochemical attributes of the Oligocene Barail Group of rocks are used to decipher the likely source area(s)or tectonic domains,as this sequence of rocks was deposited in a foreland basin governed by orogenic domain,namely the North-east Arunachal Himalayas.The river system that gave rise to the Brahmaputra River(Yarlung-Tsangpo),which flowed through several tectonic domains of the Himalayan ranges,primarily from BomiChayu,Gangadese Granitoid,Higher Himalayan Leucogranites,and Namche Barwa into the proto Bengal Basin now a part of Assam Arakan Basin and Naga Schuppen Belt,was the main source of the sandstone formation of the Barail Group.The purpose of sandstone petrography,which combines modal analysis with XRF(Major Oxides)and HR-ICPMS(Trace&Rare Earth Elements)research,is to identify the type of source rock(s),their weathering pattern,and its paleo-environmental circumstances.These sandstones were formed from recycled orogen and include lithic and sublithic arenite variants with advanced texture and chemical maturity.The sediments were felsic(Th/Co:1.38,Cr/Th:9.78,La/Lu:11.58,Th/Sc:0.99,Eu/Eu*:0.66,La/Sc:3.05,La/Co:4.18),with contributions from intermediate source rocks and low-rank metamorphics deposited in an active continental margin to a continental island arc setting.Climatic conditions impacted the sediments of Barails,characterised by being warm and semi-humid to humid which resulted in moderate to a high degree of chemical weathering,as shown by weathering indices like CIA(79.14),PIA(85.47),CIW(86.9),WIP(32.50),ICV(0.71),and Th/U(6.03),which were further additionally supported by C-Value(1.01),PF(1.20),Sr/Cu(2.04),and Rb/Sr(0.97). 展开更多
关键词 Belt of Schuppen Barail Group Sandstone PETROGRAPHY geochemistry PROVENANCE Tectonic setting
下载PDF
Genesis and geological significance of carbonate in Changdu Basin,Xizang,China:Constraints from geochemistry and C-O isotopes
10
作者 Wenhua Han Yongshou Li +4 位作者 Haizhou Ma Huaide Cheng Binkai Li Qinyu Hai Xuahai Ma 《Acta Geochimica》 EI CAS CSCD 2024年第6期1192-1204,共13页
Research on the origin of carbonates in Changdu Basin holds significant importance for understanding the regional potash formation model.Based on a comprehensive review of previous studies,field geological surveys,and... Research on the origin of carbonates in Changdu Basin holds significant importance for understanding the regional potash formation model.Based on a comprehensive review of previous studies,field geological surveys,and laboratory investigations,this study analyzes the origin and properties of carbonates within the context of regional potash formation.Petrographic studies show that magnesite deposits,with the characteristics of sedimentary origin.The results of elemental geochemical analysis show that the carbonates in this area were formed in the sedimentary environment via evaporation followed by concentration,and the formation of magnesite was possibly caused by the substitution of calcium in the dolomite with magnesium-rich brine.Theδ^(13)C values of carbonats in the study area are between5.9‰and 9.1‰.Theδ^(18)O values of magnesite samples range from-7.3‰to-1.3‰,and theδ^(18)O values of dolomites range from-10.3‰to-8.4‰.All the calculated Z values of oxygen isotopes of carbonates greater than 120.A comprehensive analysis of carbon and oxygen isotopes indicates that the magnesite was formed in a highly concentrated Marine sedimentary environment and does not show any relation with the metasomatism of hydrothermal fluids.The results on the correlation of magnesite with seawater and its sedimentary origin provide key information for explaining the migration direction of brine between the Changdu and Lanping-Simao Basins.The residual metamorphic seawater in the Changdu Basin migrated to the Lanping-Simao Basin,where potash underwent deposition.Whereas,magnesite and dolomite in the early stage of potash formation were left in the Changdu Basin. 展开更多
关键词 Changdu basin CARBONATITE geochemistry Mineral deposit genesis Significance of potash formation
下载PDF
Geochemistry, mineral paragenesis and geothermal conditions of oreforming fluids from the Ain El Bey Cu–Fe deposit: potential occurrence of native gold and precious metal traces (North African orogenic belt, Northern Tunisia)
11
作者 Rania Ben Aissa Wiem Ben Aissa +2 位作者 Said Tlig Lassaad Ben Aissa Abdessalem Ben Haj Amara 《Acta Geochimica》 EI CAS CSCD 2024年第2期366-384,共19页
The Ain El Bey abandoned mine, in North-West Tunisia, fits into the geodynamic context of the European and African plate boundary. Ore deposit corresponds to veins and breccia of multiphase Cu–Fe-rich mineralization ... The Ain El Bey abandoned mine, in North-West Tunisia, fits into the geodynamic context of the European and African plate boundary. Ore deposit corresponds to veins and breccia of multiphase Cu–Fe-rich mineralization related to various hydrothermal fluid circulations. Petromineralogical studies indicate a rich mineral paragenesis with a minimum of seven mineralization phases and, at least, six pyrite generations. As is also the case for galena and native silver, native gold is observed for the first time as inclusion in quartz which opens up, thus, new perspectives for prospecting and evaluating the potential for noble metals associated with the mineralization. Scanning Electron Microscope--Energy Dispersive Spectroscopy and Transmission electron microscopy analyses show, in addition, a large incorporation of trace elements, including Ag and Au, in mineral structures such as fahlores(tetrahedrite-tennantite) and chalcopyrite ones. The mineral/mineral associations, used as geothermometers, gave estimated temperatures for the mineralizing fluids varying from 254 to 330 ℃ for phase Ⅲ, from 254 to 350 ℃ for phase Ⅳ, and from 200 to 300 ℃ for phases Ⅴ and Ⅵ. The seventh and last identified mineralization phase, marked by a deposit of native gold, reflects a drop in the mineralizing fluid’s temperature(< 200 ℃) compatible with boiling conditions. Such results open up perspectives for the development of precious metal research and the revaluation of the Cu–Fe ore deposit at the Ain El Bey abandoned mine, as well as at the surrounding areas fitting in the geodynamic framework of the Africa-Europe plate boundary. 展开更多
关键词 Ore-formingfluids Mineral geochemistry Mineral geothermometers Native silver-gold Ain El Bey Ore deposit North Tunisia
下载PDF
Multi-stage formation of the Feragen ophiolite,Norway:Implication from petrology and geochemistry of peridotites and chromitites and its potential for prospecting
12
作者 Tian Qiu Fa-hui Xiong +2 位作者 David G.Gee Yuan Li Jing-sui Yang 《China Geology》 CAS CSCD 2024年第4期686-701,共16页
The ultramafic massif of Feragen,which belongs to the eastern ophiolitic belt of Norway,has abundant amounts of chromite ores.Recent studies have revealed a complex melt evolution in a supra-subduction zone(SSZ)enviro... The ultramafic massif of Feragen,which belongs to the eastern ophiolitic belt of Norway,has abundant amounts of chromite ores.Recent studies have revealed a complex melt evolution in a supra-subduction zone(SSZ)environment.This study presents new whole-rock major element,trace element,and platinum-group element chemistry to evaluate their petrogenesis and tectonic evolution.Harzburgites have high CaO,Al_(2)O_(3),TiO_(2),MgO,and REE contents corresponding to abyssal peridotites,whereas dunites have low CaO,Al_(2)O_(3),TiO_(2),MgO,and REE contents corresponding to SSZ peridotites.The Cr^(#)and TiO_(2) of chromian spinels in the harzburgites suggest as much as about 15%–20%melting and the dunites are more depleted with>40%melting.The harzburgites and the dunites and high-Cr chromitites represent,respectively,the products of low-degree partial melting in a back-arc setting,and the products of melt-rock interaction in a SSZ environment.The calculated fO_(2) values for dunites and high-Cr chromitites(-0.17–+0.23 and+2.78–+5.65,respectively and generally above the FMQ buffer)are also consistent with the interaction between back-arc ophiolites with oxidized boninitic melts in a SSZ setting. 展开更多
关键词 geochemistry ƑO_(2) Platinum-group elements High-Cr podiform chromitites SSZ peridotite Harzburgites Feragen ophiolite Norway DUNITE Abyssal peridotite
下载PDF
Exploration and Practice of“Guiding Interactive”Teaching in Advanced Geochemistry Courses from the Perspective of Constructivist Theory
13
作者 Lei Liu Chunming Liu Weijian Zhou 《Journal of Contemporary Educational Research》 2024年第1期52-57,共6页
The construction of geochemical disciplines has brought new vitality to the development of traditional geology.In the new round of“Double First-Class”discipline construction at Central South University,the course of... The construction of geochemical disciplines has brought new vitality to the development of traditional geology.In the new round of“Double First-Class”discipline construction at Central South University,the course of Advanced Geochemistry has effectively stimulated students’interest in learning and further improved their scientific thinking and research innovation skills through the implementation of“Guiding Interactive”teaching reform measures,which has important theoretical significance and practical value. 展开更多
关键词 geochemistry Advanced geochemistry Teaching reform Guiding Interactive
下载PDF
Ecological Geochemistry of Selenium in the Production Base of Zhangqiu Green Chinese Onion 被引量:3
14
作者 庞绪贵 高宗军 +1 位作者 王敏 王增辉 《Agricultural Science & Technology》 CAS 2010年第11期39-43,共5页
Based on the achievement of local ecological geochemical survey,the selenium in surface layer soil of Zhangqiu green Chinese onion within production area is systematically studied in this study.And the ecological geoc... Based on the achievement of local ecological geochemical survey,the selenium in surface layer soil of Zhangqiu green Chinese onion within production area is systematically studied in this study.And the ecological geochemical characters of selenium both in surface layer soil and in green Chinese onions are analyzed,and the relationship between the selenium in plant and soil is discussed.The results show that soil in Zhangqiu is rich in selenium,and it is suitable to develop the selenium-rich green Chinese onion products. 展开更多
关键词 Ecological geochemistry Zhangqiu green Chinese onion Selenium-rich agricultural products Available selenium Biological accumulation coefficient
下载PDF
Geochemistry of intrusive rock in Dachang tin-polymetallic ore field, Guangxi, China: Implications for petrogenesis and geodynamics 被引量:5
15
作者 成永生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期284-292,共9页
The major element, trace element and rare earth element(REE) of the intrusion rock from the Dachang ore field in Guangxi, China, were analyzed. The results show that the phenocryst(about 15%) and matrix(about 85%... The major element, trace element and rare earth element(REE) of the intrusion rock from the Dachang ore field in Guangxi, China, were analyzed. The results show that the phenocryst(about 15%) and matrix(about 85%) mainly consist of quartz, K-feldspar and plagioclase. The rock is composed of low content of Si and high content of Al2O3, low contents of Ca, Fe2O3, Na, TiO2, etc. The intrusion rock has the medium alkali content, attributing to K-rich type rock; and contains medium to low REE contents, of which light rare earth elements(LREEs) and heavy rare earth elements(HREEs) are highly fractionated, showing a weak negative Ce anomaly and a negative Eu anomaly. These rocks are enriched in LREE, and the large ion lithophytes elements(LILE) are rich in Rb, Sr, and U; the high-field-strength elements(Nb, Th, etc) are relatively depleted. The REE chondrite-normalized patterns are consistent with the overall, roughly indicating their similar characteristics, sources and evolution. The intrusion rock mainly formed during the collisional and within-plate periods. 展开更多
关键词 geochemistry PETROGENESIS tectonic setting magma evolution Dachang ore field GUANGXI
下载PDF
Petrogenesis of skarn in Shizhuyuan W-polymetallic deposit, southern Hunan,China:Constraints from petrology,mineralogy and geochemistry 被引量:2
16
作者 成永生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第6期1676-1687,共12页
Skarn is the main altered rock type and is of great importance to mineralization and ore-prospecting in the Shizhuyuan area of Hunan province, China. Its features of petrography, mineralogy and geochemistry were st... Skarn is the main altered rock type and is of great importance to mineralization and ore-prospecting in the Shizhuyuan area of Hunan province, China. Its features of petrography, mineralogy and geochemistry were studied systematically. The results show that the skarn mainly consists of garnet skarn, secondary wollastonite-garnet skarn, tremolite-clinozoisite skarn, and few wolframine garnet skarn, idocrase-garnet skarn and wollastonite skarn with granoblastic texture, granular sheet crystalloblastic texture, and massive structure, disseminated structure, mesh-vein structure, comb structure, and banded structure. And, it is mainly composed of garnet, fluorite, chlorite, hornblende, epidote, tremolite, plagioclase, biotite, muscovite, plagioclase, quartz, idocrase, and calcite and so on. The chemical components mainly include SiO2, Al2O3, Fe2O3, MgO and CaO, and the trace elements and REEs consist of Li, Be, V, Co, Zn, Ga, Rb, Sr, Y, Ce, Nd, Pb and Bi, etc. And, the obvious fractionation exists between LREE and HREE, and it shows typical features of Nanling ore-forming granite for W?Sn polymetallic deposit. Skarn is derived from the sedimentary rock, such as limestone, mudstone, argillaceous rock, and few pelitic strips. It is affected by both Shetianqiao formation strata and Qianlishan granite during the diagenesis, indicating a strong reduction environment. The occurrence of skarn, whose mutation site is favorable to the mineralization enrichment, is closely related to the mineralization and prospecting. 展开更多
关键词 SKARN PETROGENESIS geochemistry Shizhuyuan W-polymetallic deposit southern Hunan
下载PDF
Subduction zone geochemistry 被引量:68
17
作者 Yong-Fei Zheng 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第4期1223-1254,共32页
Crustal recycling at convergent plate boundaries is essential to mantle heterogeneity.However,crustal signatures in the mantle source of basaltic rocks above subduction zones were primarily incorporated in the form of... Crustal recycling at convergent plate boundaries is essential to mantle heterogeneity.However,crustal signatures in the mantle source of basaltic rocks above subduction zones were primarily incorporated in the form of liquid rather than solid phases.The physicochemical property of liquid phases is determined by the dehydration behavior of crustal rocks at the slab-mantle interface in subduction channels.Because of the significant fractionation in incompatible trace elements but the full inheritance in radiogenic isotopes relative to their crustal sources,the production of liquid phases is crucial to the geochemical transfer from the subducting crust into the mantle.In this process,the stability of specific minerals in subducting crustal rocks exerts a primary control on the enrichment of given trace elements in the liquid phases.For this reason,geochemically enriched oceanic basalts can be categorized into two types in terms of their trace element distribution patterns in the primitive mantle-normalized diagram.One is island arc basalts(IAB),showing enrichment in LILE,Pb and LREE but depletion in HFSE such as Nb and Ta relative to HREE,The other is ocean island basalts(OIB),exhibiting enrichment in LILE and LREE,enrichment or non-depletion in HFSE but depletion in Pb relative to HREE.In either types,these basalts show the enhanced enrichment of LILE and LREE with increasing their incompatibility relative to normal mid-ocean ridge basalts(MORB).The thermal regime of subduction zones can be categorized into two stages in both time and space,The first stage is characterized by compressional tectonism at low thermal gradients.As a consequence,metamorphic dehydration of the subducting crust prevails at forearc to subarc depths due to the breakdown of hydrous minerals such as mica and amphibole in the stability field of garnet and rutile,resulting in the liberation of aqueous solutions with the trace element composition that is considerably enriched in LILE,Pb and LREE but depleted in HFSE and HREE relative to normal MORB.This provides the crustal signature for the mantle sources of IAB.The second stage is indicated by extensional tectonism at high thermal gradients,leading to the partial melting of metamorphically dehydrated crustal rocks at subarc to postarc depths.This involves not only the breakdown of hydrous minerals such as amphibole,phengite and allanite in the stability field of garnet but also the dissolution of rutile into hydrous melts.As such,the hydrous melts can acquire the trace element composition that is significantly enriched in LILE,HFSE and LREE but depleted in Pb and HREE relative to normal MORB,providing the crustal signature for the mantle sources of OIB.In either case,these liquid phases would metasomatize the overlying mantle wedge peridotite at different depths,generating ultramafic metasomatites such as serpentinized and chloritized peridotites,and olivine-poor pyroxenites and hornblendites.As a consequence,the crustal signatures are transferred by the liquid phases from the subducting slab into the mantle. 展开更多
关键词 SUBDUCTION zone BASALTS Element mobility Geochemical differentiation CRUSTAL METASOMATISM MANTLE geochemistry
下载PDF
Rare Earth Element Geochemistry of Late Palaeozoic Coals in North China 被引量:15
18
作者 HUANG Wenhui YANG Qi +2 位作者 TANG Dazhen TANG Xiuyi ZHAO Zhigen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第1期74-83,共10页
Abstract: Instrumental Neutron Activation Analysis (INAA) was done to determine the abundances of rare earth elements (REE) of 58 samples of Late Palaeozoic Carboniferous-Permian coals and related rocks in North China... Abstract: Instrumental Neutron Activation Analysis (INAA) was done to determine the abundances of rare earth elements (REE) of 58 samples of Late Palaeozoic Carboniferous-Permian coals and related rocks in North China. Detailed study of REE geochemistry shows that the ?REE of most coals studied in this paper is in a normal range between 30×10?6 and 80×10?6 with a mean of 56×10?6. The REE in the Taiyuan Formation in the northern part of North China are much richer than those in the southern part. This is due to the shorter distance to the source area in the north. Moreover, the ?REE is in positive correlation to coal ash, especially closely related to the content of clay minerals <2 μm in size. This reveals that most REE were carried by terrigenous clastic materials, especially fine clay minerals. In the coals the light REE (LREE) are much richer than the heavy REE (HREE), and the LREE/HREE ratio in coals generally varies from 2 to 8. The LREE/HREE ratio of high-ash, low-sulphur coals is higher than that of low-ash, high-sulphur coals, and is even higher in the roof and floor rocks, reaching 12 with the highest (up to 21) in pyrite concretions, which shows that the HREE have a stronger affinity to organic matter in a reducing environment influenced by seawater. Furthermore, Eu is generally depleted in coals. The REE chondrite-normalized distribution patterns are very similar in coals of the whole of North China. From the REE geochemical characteristics it can be concluded that during the formation of Late Palaeozoic Carboniferous-Permian coals in North China, the supply of terrigeneous materials remained quite stable. The ?REE in low-ash, high-sulphur coals is relatively low and the REE are mainly carried by fine-grained minerals and organic matter and a certain percentage of REE are adsorbed by organic matter; while the ?REE in high-ash, low-sulphur coals is higher and the REE are mainly present in detritus. The ?REE of magmatism-influenced coals is the highest, which suggests that the introduction of magmatic substances may increase the ?REE, thus causing the REE distribution patterns to show an abnormal feature. Moreover, some harmful elements such as U, W and As usually increase when the coals are influenced by magmatism. 展开更多
关键词 Late Palaeozoic COAL REE geochemistry North China
下载PDF
Geochemistry of Mesoproterozoic Volcanic Rocks in the Western Kunlun Mountains: Evidence for Plate Tectonic Evolution 被引量:24
19
作者 ZHANGChuanlin DONGYongguan +2 位作者 ZHAOYu WANGAiguo GUOKunyi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2003年第2期237-245,共9页
Mesoproterozoic volcanic rocks occurring in the north of the western Kunlun Mountains can be divided into two groups. The first group (north belt) is an reversely-evolved bimodal series. Petrochemistry shows that the ... Mesoproterozoic volcanic rocks occurring in the north of the western Kunlun Mountains can be divided into two groups. The first group (north belt) is an reversely-evolved bimodal series. Petrochemistry shows that the alkalinity of the rocks decreases from early to late: alkaline→calc-alkaline→tholeiite, and geochemistry proves that the volcanic rocks were formed in rifting tectonic systems. The sedimentary facies shows characteristics of back-arc basins. The second (south belt) group, which occurs to the south of Yutian-Minfeng-Cele, is composed of calc-alkaline island arc (basaltic) andesite and minor rhyolite. The space distribution, age and geochemistry of the two volcanite groups indicate that they were formed in a back-arc basin (the first group) and an island arc (the second group) respectively and indicate the plate evolution during the Mesoproterozoic. The orogeny took place at -1.05 Ga, which was coeval with the Grenville orogeny. This study has provided important geological data for exploring the position of the Paleo-Tarim plate in the Rodinia super-continent. 展开更多
关键词 western Kunlun Mesoproterozoic volcanic rocks geochemistry Grenville orogeny
下载PDF
Geochemistry and SHRIMP Zircon U-Pb Age of Post-Collisional Granites in the Southwest Tianshan Orogenic Belt of China:Examples from the Heiyingshan and Laohutai Plutons 被引量:20
20
作者 LONG Lingli GAO Jun +5 位作者 WANG Jingbin QIAN Qing XIONG Xianming WANG Yuwang WANG Lijuan GAO Liming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第2期415-424,共10页
The Heiyingshan granite and the Laohutai granite plutons exposed in the Southwest Tianshan resemble A-type granites geochemically. Analysis shows that the both are ferron calc-alkalic peraluminous or ferron alkali-cal... The Heiyingshan granite and the Laohutai granite plutons exposed in the Southwest Tianshan resemble A-type granites geochemically. Analysis shows that the both are ferron calc-alkalic peraluminous or ferron alkali-calcic peraluminous with a relatively high concentration of SiO2 (〉70%), high alkali contents (Na20 + K20 = 7.14%-8.56%; K20〉N20; A/CNK = 0.99-1.20), and pronounced negative anomales in Eu, Ba, St, P and Ti. A SHRIMP zircon U-Pb age of 285±4 Ma was obtained for the Heiyingshan hornblende biotite granite intrusion. The geochemical and age dating data reported in this paper indicate that these granites were formed during the post-collisional crustal extension of the Southwest Tianshan orogenic belt, in agreement with the published data for the granites in the South Tianshan. 展开更多
关键词 Xinjiang Southwest Tianshan granite geochemistry SHRIMP zircon U-Pb age
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部